Skip to main content

Influence of Radiation Protocols on Graft-vs-Host Disease Incidence After Bone-Marrow Transplantation in Experimental Models

  • Protocol
Adoptive Immunotherapy: Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 109))

Abstract

Bone-marrow transplantation is an approved curative treatment for many hemato- and oncologic diseases. Nevertheless, the severe acute clinical course of graft-vs-host disease (GVHD) after allogeneic bone-marrow transplantation is frequently fatal, and is to date not curable. Acute GVHD must, therefore, be prevented from the start of the bone-marrow transplantation by immunosuppressive medication, causing sometimes serious side effects. Therefore, new preventive strategies are tested, starting with animal experiments. Often mice are chosen for this kind of trial, and the clinical protocol of bone-marrow transplantation is transferred into the experimental settings. The first step to induce an acute GVHD is whole-body irradiation of the recipients. Several methods are available for this purpose: the most common is a 60cobalt source (γ-irradiation); less common are a 137cesium source (γ-irradiation) and a linear (particle) accelerator (photons). Differences between these radiation techniques can occur and can unexpectedly interfere with the results of the experiments. In this chapter, the materials and methods for bone-marrow transplantation in mice, with particular emphasis on the different radiation techniques, are explained; furthermore, the advantages and disadvantages in regard to the underlying physical principles will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waer, M., Ang, K. K., Schueren, E. van der, and Vandeputte, M. (1984) Increased incidence of murine graft-versus-host disease after allogeneic bone marrow transplantation by previous infusion of syngeneic bone marrow cells. Transplantation 38, 396–400.

    Article  PubMed  CAS  Google Scholar 

  2. Eberl, G., Lees. R, Smiley, S. T., Taniguchi, M., Grusby, M. J., and MacDonald, H. R. (1999) Tissue-specific segregation of CD 1d-dependent and CD 1d-independent NK T cells. J. Immunol. 162, 6410–6419.

    PubMed  CAS  Google Scholar 

  3. Zeng, D., Gazit, G., Dejbakhsh-Jones, S., et al. (1999) Heterogeneity of NK1.1-T cells in the bone marrow: divergence from the thymus. J. Immunol. 163, 5338–5345.

    PubMed  CAS  Google Scholar 

  4. Rosario, M. L. U. del, Zucali, J. R., and Kao, K. J. (1999) Prevention of graft-versushost disease by induction of immune tolerance with ultraviolet b-irradiated leukocytes in H-2 disparate bone marrow donor. Blood 93, 3558–3564.

    PubMed  Google Scholar 

  5. Zeng, D., Lewis, D., Dejbakhsh-Jones, S., et al. (1999) Bone marrow NK1.1-and NK1.1+T cells reciprocally regulate acute graft versus host disease. J. Exp. Med. 189, 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  6. Fauci, A. S. (1975) Human bone marrow lymphocytes: I. Distribution of lymphocyte subpopulations in the bone marrow of normal individuals. J. Clin. Invest. 56, 98–110.

    Article  PubMed  CAS  Google Scholar 

  7. Zeng, D., Hoffmann, P., Lan, F., Huie, P., Higgins, J., and Strober, S. (2002) Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the bone marrow from those in the periphery: impact on allogeneic bone marrow transplantation. Blood 99, 1449–1457.

    Article  PubMed  CAS  Google Scholar 

  8. Sykes, M. (1990) Unusual T cell populations in adult murine bone marrow. Prevalence of CD3+CD4-CD8-and αβTCR+NK1.1+cells. J. Immunol. 145, 3209–3215.

    PubMed  CAS  Google Scholar 

  9. Gombert, J. M., Herbelin, A., Tancrede-Bohin, E., Dy, M., Carnaud, C., and Bach, J. F. (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998.

    Article  PubMed  CAS  Google Scholar 

  10. Baxter, A. G., Kinder, S. J., Hammond, K. J., Scollay, R., and Godfrey, D. I. (1997) Association between αβTCR+CD4-CD8-T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582.

    Article  PubMed  CAS  Google Scholar 

  11. Hammond, K. J. L., Poulton, L. D., Palmisano, L. J., Silveira, P. A., Godfrey, D. I., and Baxter, A. G. (1998) α/β-T cell receptor (TCR)+CD4-CD8-(NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL) 4 and/or IL-10. J. Exp. Med. 187, 1047–1056.

    Article  PubMed  CAS  Google Scholar 

  12. Palathumpat, V., Dejbakhsh-Jones, S., Holm, B., Wang, H., Liang, O., and Strober, S. (1992) Studies of CD4-CD8-αβ bone marrow T cells with suppressor activity. J. Immunol. 148, 373–380.

    PubMed  CAS  Google Scholar 

  13. Sykes, M., Hoyles, K. A., Romick, M. L., and Sachs, D. H. (1990) In vitro and in vivo analysis of bone marrow-derived CD3+, CD4-, CD8-, NK1.1+cell lines. Cell. Immunol. 129, 478–493.

    CAS  Google Scholar 

  14. Strober, S., Cheng, L., Zeng, D., et al. (1996) Double negative (CD4-CD8-αβ+) T cells which promote tolerance induction and regulate autoimmunity. Immunol. Rev. 149, 217–230.

    Article  PubMed  CAS  Google Scholar 

  15. Strober, S. (2000) Natural killer 1.1+T cells and &quote;natural suppressor&quote; T cells in the bone marrow. J. Allergy. Clin. Immunol. 106, S1 13–114.

    Article  CAS  Google Scholar 

  16. Quast, U. and Hoederath, A. (1996) Ganzkörperbestrahlung. In: Strahlentherapie: Radiologische Onkologie. Scherer, E. and Sack, H. eds., Springer, New York, NY, pp. 207–218.

    Google Scholar 

  17. Richter, J. and Schwab, F. (1998) Charakterisierung und Eigenschaften von Dosisverteilungen, in Strahlenphysik für die Radioonkologie. Richter, J. and Flentje, M., eds., Thieme Stuttgart, New York, NY, pp. 43–59.

    Google Scholar 

  18. Verhey, L. J. (1998) Principles of radiation physics. In: Textbook of Radiation Oncology. Leibel, S. A. and Phillips, T. L. eds. WB Saunders, Philadelphia, PA, pp. 91–114.

    Google Scholar 

  19. Laubenberger, T. and Laubenberger, J. (eds.) (1994) Technik der medizinischen Radiologie: Diagnostik, Strahlentherapie, Strahlenschutzfür Ärzte, Medizinstudenten und MTRA; mit Anleitung zur Strahlenschutzbelehrung in der Röntgendiagnostik. Deutscher Ärzte-Verlag, Köln, Germany.

    Google Scholar 

  20. Schmidt, R. (1998) Geräte zur Erzeugung ionisierender Strahlung. In: Strahlenphysik für die Radioonkologie. Richter, J. and Flentje, M. eds. Thieme Stuttgart, New York, NY, pp. 27–38.

    Google Scholar 

  21. Sykes, M., Pearson, D. A., Taylor, P. A., Szot, G. L., Goldman, S. J., and Blazar, B. R. (1999) Dose and timing of interleukin (IL)-12 and timing and type of total-body irradiation: effects on graft-vs.-host disease inhibition and toxicity of exogenous IL-12 in murine bone marrow transplant recipients. Biol. Blood Marrow Transplant. 5, 277–284.

    Article  PubMed  CAS  Google Scholar 

  22. Henning, U. G. G., Wang, Q., Gee, N. H., and von Borstel, R. C. (1996) Protection and repair of γ-radiation-induced lesions in mice with DNA or deoxyribonucleoside treatments. Mutat. Res. 350, 247–254.

    PubMed  Google Scholar 

  23. Baker, M. B., Altman, N. H., Podack, E. R., and Levy, R. B. (1996) The role of cellmediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J. Exp. Med. 184, 2645–2656.

    Article  Google Scholar 

  24. Sprent, J., Schaefer, M., Gao, E. K., and Korngold, R. (1988) Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class IIH-2 differences. I. L3T4+cells can either augment or retard GVHD elicited by Lyt-2+cells in class Idifferent hosts. J. Exp. Med. 167, 556–569.

    Article  PubMed  CAS  Google Scholar 

  25. Sprent, J., Schaefer, M., and Korngold, R. (1990) Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class II H-2 differences. J. Immunol. 144, 2946–2954.

    PubMed  CAS  Google Scholar 

  26. Graubert, T. A., Russell, J. H., and Ley, T. (1996) The role of granzyme B in murine models of acute graft-versus-host disease and graft rejection. Blood 87, 1232–1237.

    PubMed  CAS  Google Scholar 

  27. Graubert, T. A., DiPersio, J. F., Russell, J. H., and Ley, T. J. (1997) Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J. Clin. Invest. 100, 904–911.

    Article  PubMed  CAS  Google Scholar 

  28. Korngold, R. and Sprent, J. (1985) Surface markers of T cells causing lethal graft-vs-host disease to class I vs class H-2 differences. J. Immunol. 135, 3004–3010.

    PubMed  CAS  Google Scholar 

  29. Sprent, J., Schaefer, M., Lo, D., and Korngold, R. (1986) Properties of purified T cell subsets. II. In vivo responses to class I vs. class II H-2 differences. J. Exp. Med. 163, 998–1011.

    Article  PubMed  CAS  Google Scholar 

  30. Dey, B., Yang, Y. G., Preffer, F., Shimizu, A., Swenson, K., Dombkowski, D., and Sykes, M. (1999) The fate of donor T-cell receptor transgenic T cells with known host antigen specificity in a graft-versus-host disease model. Transplantation 68, 141–149.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Schwarte, S., Hoffmann, M.W. (2005). Influence of Radiation Protocols on Graft-vs-Host Disease Incidence After Bone-Marrow Transplantation in Experimental Models. In: Ludewig, B., Hoffmann, M.W. (eds) Adoptive Immunotherapy: Methods and Protocols. Methods in Molecular Medicine™, vol 109. Humana Press. https://doi.org/10.1385/1-59259-862-5:445

Download citation

  • DOI: https://doi.org/10.1385/1-59259-862-5:445

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-406-7

  • Online ISBN: 978-1-59259-862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics