Skip to main content

Methods for the Ex Vivo Characterization of Human CD8+T Subsets Based on Gene Expression and Replicative History Analysis

  • Protocol

Part of the Methods in Molecular Medicine™ book series (MIMM,volume 109)

Abstract

The generation of an antigen-specific T-lymphocyte response is a complex multi-step process. Upon T-cell receptor-mediated recognition of antigen presented by activated dendritic cells, naive T-lymphocytes enter a program of proliferation and differentiation, during the course of which they acquire effector functions and may ultimately become memory T-cells. A major goal of modern immunology is to precisely identify and characterize effector and memory T-cell subpopulations that may be most efficient in disease protection. Sensitive methods are required to address these questions in exceedingly low numbers of antigen-specific lymphocytes recovered from clinical samples, and not manipulated in vitro. We have developed new techniques to dissect immune responses against viral or tumor antigens. These allow the isolation of various subsets of antigen-specific T-cells (with major histocompatibility complex [MHC]-peptide multimers and five-color FACS sorting) and the monitoring of gene expression in individual cells (by five-cell reverse transcription-polymerase chain reaction [RT-PCR]). We can also follow their proliferative life history by flow-fluorescence in situ hybridization (FISH) analysis of average telomere length. Recently, using these tools, we have identified subpopulations of CD8+ T-lymphocytes with distinct proliferative history and partial effector-like properties. Our data suggest that these subsets descend from recently activated T-cells and are committed to become differentiated effector T-lymphocytes.

Keywords

  • Cytolytic T-lymphocytes (CTL)
  • memory
  • effector
  • tumor immunity
  • T-cell differentiation
  • melanoma
  • immunoassay
  • senescence
  • fibroblasts
  • gene expression
  • single-cell
  • RT-PCR
  • polyA cDNA amplification
  • replicative history
  • telomere length
  • flow-FISH
  • in situhybridization
  • nuclei

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-862-5:265
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-862-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)
Hardcover Book
USD   219.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Van Der Bruggen, P., Zhang, Y., Chaux, P., et al. (2002) Tumor-specific shared antigenic peptides recognized by human T-cells. Immunol. Rev. 188, 51–64.

    CrossRef  Google Scholar 

  2. Speiser, D., Pittet, M. J., Rimoldi, D., et al. (2003) Evaluation of melanoma vaccines with molecularly defined antigens by ex vivo monitoring of tumor-specific T cells. Seminars in Cancer Biology 13, 461–472.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Dudley, M. E. and Rosenberg, S. A. (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer 3, 666–675.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Ho, W. Y., Blattman, J. N., Dossett, M. L., Yee, C., and Greenberg, P. D. (2003) Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3, 431–437.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Waldmann, T. A., Levy, R., and Coller, B. S. (2000) Emerging therapies: spectrum of applications of monoclonal antibody therapy. Hematology (Am. Soc. Hematol. Educ. Program) 2000 394–408.

    Google Scholar 

  6. Marchand, M., Punt, C. J., Aamdal, S., et al. (2003) Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SB AS-2: a clinical report. Eur. J. Cancer 39, 70–77.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J., and Chen, Y. T. (2002) Cancer/ testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Rosenberg, S. A., Yang, J. C., Schwartzentruber, D. J., et al. (2003) Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin. Cancer Res. 9, 2973–2980.

    PubMed  CAS  Google Scholar 

  9. Smith, J. W., 2nd, Walker, E. B., Fox, B. A., et al. (2003) Adjuvant immunization of HLAA2 positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+T-cell responses. J. Clin. Oncol. 21, 1562–1573.

    PubMed  CAS  CrossRef  Google Scholar 

  10. Romero, P., Valmori, D., Pittet, M. J., et al. (2002) Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunol. Rev. 188, 81–96.

    PubMed  CAS  CrossRef  Google Scholar 

  11. Ghanekar, S. A. and Maecker, H. T. (2003) Cytokine flow cytometry: multiparametric approach to immune function analysis. Cytotherapy 5, 1–6.

    PubMed  CAS  CrossRef  Google Scholar 

  12. Pittet, M. J., Zippelius, A., Speiser, D. E., et al. (2001) Ex vivo IFN-gamma secretion by circulating CD8 T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J. Immunol. 166, 7634–7640.

    PubMed  CAS  Google Scholar 

  13. Altman, J. D., Moss, P. A. H., Goulder, P. J. R., et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.

    PubMed  CAS  CrossRef  Google Scholar 

  14. Kawakami, Y., Eliyahu, S., Sakaguchi, K., et al. (1994) Identification of the immuno dominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J. Exp. Med. 180, 347–352.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Pittet, M. J., Zippelius, A., Valmori, D., Speiser, D. E., Cerottini, J. C., and Romero, P. (2002) Melan-A/MART-1-specific CD8 T cells: from thymus to tumor. Trends Immunol. 23, 325–328.

    PubMed  CAS  CrossRef  Google Scholar 

  16. Brady, G. and Iscove, N. N. (1993) Construction of cDNA libraries from single cells. Methods Enzymol. 225, 611–623.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Sauvageau, G., Lansdorp, P. M., Eaves, C. J., et al. (1994) Differential expression of homeobox genes in functionally distinct CD34+subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 91, 12,223–12,227.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Bigouret, V., Hoffmann, T., Arlettaz, L., et al. (2003) Monoclonal T-cell expansions in asymptomatic individuals and in patients with large granular leukemia consist of cyto toxic effector T cells expressing the activating CD94:NKG2C/E and NKD2D killer cell receptors. Blood 101, 3198–3204.

    PubMed  CAS  CrossRef  Google Scholar 

  19. Rufer, N., Zippelius, A., Batard, P., et al. (2003) Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102, 1779–1787.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E., and Lansdorp, P. M. (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743–747.

    PubMed  CAS  CrossRef  Google Scholar 

  21. Rufer, N., Brummendorf, T. H., Kolvraa, S., et al. (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190, 157–167.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Zippelius, A., Pittet, M. J., Batard, P., et al. (2002) Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J. Exp. Med. 195, 485–494.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Papagno, L., Spina, C. A., Marchant, A., et al. (2004) Immune activation and CD8+T-cell differentiation towards senescence in HIV-1 infection. PLoS 2(2), e20.

    CrossRef  Google Scholar 

  24. Levsky, J. M., Shenoy, S. M., Pezo, R. C., and Singer, R. H. (2002) Single-cell gene expression profiling. Science 297, 836–840.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Hultdin, M., Gronlund, E., Norrback, K., Eriksson-Lindstrom, E., Just, T., and Roos, G. (1998) Telomere analysis by fluorescence in situ hybridization and flow cytometry. Nucleic Acids Res. 26, 3651–3656.

    PubMed  CAS  CrossRef  Google Scholar 

  26. Lauzon, W., Sanchez Dardon, J., Cameron, D. W., and Badley, A. D. (2000) Flow cytometric measurement of telomere length. Cytometry 42, 159–164.

    PubMed  CAS  CrossRef  Google Scholar 

  27. Baerlocher, G. M., Mak, J., Tien, T., and Lansdorp, P. M. (2002) Telomere length mea-surement by fluorescence in situ hybridization and flow cytometry: tips and pitfalls. Cytometry 47, 89–99.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.

    PubMed  CAS  CrossRef  Google Scholar 

  29. Allsopp, R. C., Vaziri, H., Patterson, C., et al. (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10,114–10,118.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Lansdorp, P. M., Poon, S., Chavez, E., et al. (1997) Telomeres in the haemopoietic system. Ciba Found. Symp. 211, 209–218; discussion 19-22.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Rufer, N., Reichenbach, P., Romero, P. (2005). Methods for the Ex Vivo Characterization of Human CD8+T Subsets Based on Gene Expression and Replicative History Analysis. In: Ludewig, B., Hoffmann, M.W. (eds) Adoptive Immunotherapy: Methods and Protocols. Methods in Molecular Medicine™, vol 109. Humana Press. https://doi.org/10.1385/1-59259-862-5:265

Download citation

  • DOI: https://doi.org/10.1385/1-59259-862-5:265

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-406-7

  • Online ISBN: 978-1-59259-862-5

  • eBook Packages: Springer Protocols