Skip to main content

Gene Transfer of MHC-Restricted Receptors

  • Protocol
  • 957 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 109))

Abstract

Adoptive therapy with allogeneic or tumor-specific T-cells has shown substantial clinical effects for several human tumors, but the widespread application of this strategy remains a daunting task. The antigen specificity of T-lymphocytes is solely determined by the T-cell receptor (TCR) α and β chains. Consequently, genetic transfer of TCR chains may form an alternative and potentially appealing strategy to impose a desirable tumor-antigen specificity onto cytotoxic or helper T-cell populations. In this strategy, autologous or donor-derived T-cell populations are equipped with a TCR of defined reactivity in short-term ex vivo cultures, and re-infusion of the redirected cells is used to supply T-cell reactivity against defined tumor-specific antigens. We have previously described the genetic introduction of T-cell receptor genes into peripheral T-cells in mouse model systems. Here we discuss the requirements for the successful genetic modification of murine T-lymphocytes and the subsequent use of such genetically modified cells in in vivo models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dudley, M. E., Wunderlich, J. R., Robbins, P. F., et al. (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854.

    Article  PubMed  CAS  Google Scholar 

  2. Yee, C., Thompson, J. A., Byrd, D., et al. (2002) Adoptive T cell therapy using antigen-specific CD8+T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 99, 16,168–16,173.

    Article  PubMed  CAS  Google Scholar 

  3. Dembic, Z., Haas, W., Weiss, S., et al. (1986) Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature 320, 232–238.

    Article  PubMed  CAS  Google Scholar 

  4. Kessels, H. W., Wolkers, M. C., and Schumacher, T. N. (2002) Adoptive transfer of T-cell immunity. Trends Immunol. 23, 5, 264–269.

    Article  PubMed  CAS  Google Scholar 

  5. Kitamura, T. (1998) New experimental approaches in retro virus-mediated expression screening. Int. J. Hematol. 67, 351–359.

    Article  PubMed  CAS  Google Scholar 

  6. Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996) The pCL vector sys-tem: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705.

    PubMed  CAS  Google Scholar 

  7. Kolen, S., Dolstra, H., van de Locht, L., et al. (2002) Biodistribution and retention time of retrovirally labeled T lymphocytes in mice is strongly influenced by the culture period before infusion. J. Immunother. 25, 385–395.

    Article  PubMed  Google Scholar 

  8. Altman, J. D., Moss, P. A., Goulder, P. J., et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.

    Article  PubMed  CAS  Google Scholar 

  9. Schepers, K., Toebes, M., Sotthewes, G., et al. (2002) Differential kinetics of antigen-specific CD4+and CD8+T cell responses in the regression of retrovirus-induced sarco-mas. J. Immunol. 169, 3191–3199.

    PubMed  CAS  Google Scholar 

  10. Uckert, W., Becker, C., Gladow, M., et al. (2000) Efficient gene transfer into primary human CD8+T lymphocytes by MuLV-10A1 retrovirus pseudotype. Hum. Gene Ther. 11, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  11. Masopust, D., Vezys, V., Marzo, A. L., and Lefrancois, L. (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417.

    Article  PubMed  CAS  Google Scholar 

  12. Riddell, S. R., Elliott, M., Lewinsohn, D. A., et al. (1996) T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat. Med. 2, 216–223.

    Article  PubMed  CAS  Google Scholar 

  13. Jung, D., Jaeger, E., Cayeux, S., et al. (1998) Strong immunogenic potential of a B7 retro viral expression vector: generation of HLA-B7-restricted CTL response against select-able marker genes. Hum. Gene Ther. 9, 53–62.

    Article  PubMed  CAS  Google Scholar 

  14. Stripecke, R., Carmen Villacres, M., Skelton, D., Satake, N., Halene, S., and Kohn, D. (1999) Immune response to green fluorescent protein: implications for gene therapy. Gene Ther. 6, 1305–1312.

    Article  PubMed  CAS  Google Scholar 

  15. Skelton, D., Satake, N., and Kohn, D. B. (2001) The enhanced green fluorescent protein (eGFP) is minimally immunogenic in C57BL/6 mice. Gene Ther. 8, 1813–1814.

    Article  PubMed  CAS  Google Scholar 

  16. Davodeau, F., Peyrat, M. A., Romagne, F., et al. (1995) Dual T cell receptor beta chain expression on human T lymphocytes. J. Exp. Med. 181, 1391–1398.

    Article  PubMed  CAS  Google Scholar 

  17. Padovan, E., Giachino, C., Cella, M., Valitutti, S., Acuto, O., and Lanzavecchia, A. (1995) Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion. J. Exp. Med. 181, 1587–1591.

    Article  PubMed  CAS  Google Scholar 

  18. Balomenos, D., Balderas, R. S., Mulvany, K. P., Kaye, J., Kono, D. H., and Theofilopoulos, A. N. (1995) Incomplete T cell receptor V beta allelic exclusion and dual V beta-expressing cells. J. Immunol. 155, 3308–3312.

    PubMed  CAS  Google Scholar 

  19. Topham, D. J., Castrucci, M.R., Wingo, F.S., Belz, G.T., and Doherty, P.C. (2001) The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. J. Immunol. 167, 6983–6990.

    PubMed  CAS  Google Scholar 

  20. Moskophidis, D. and Kioussis, D. (1998) Contribution of virus-specific CD8+cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J. Exp. Med. 188, 223–232.

    Article  PubMed  CAS  Google Scholar 

  21. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., et al. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256.

    Article  PubMed  Google Scholar 

  22. van Os, R., Sheridan, T. M., Robinson, S., Drukteinis, D., Ferrara, J. L., and Mauch, P. M. (2001) Immunogenicity of Ly5 (CD45)-antigens hampers long-term engraftment follow-ing minimal conditioning in a murine bone marrow transplantation model. Stem Cells 19, 80–87.

    Article  PubMed  Google Scholar 

  23. Gladow, M., Becker, C., Blankenstein, T., and Uckert, W. (2000) MLV-10A1 retrovirus pseudotype efficiently transduces primary human CD4+T lymphocytes. J. Gene Med. 2, 409–415.

    Article  PubMed  CAS  Google Scholar 

  24. Kinsella, T. M. and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413.

    Article  PubMed  CAS  Google Scholar 

  25. Unutmaz, D., KewalRamani, V. N., Marmon, S., and Littman, D. R. (1999) Cytokine sig-nals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746.

    Article  PubMed  CAS  Google Scholar 

  26. Cavalieri, S., Cazzaniga, S., Geuna, M., et al. (2003) Human T lymphocytes transduced by lentiviral vectors in the absence of TCR-activation maintain an intact immune compe-tence. Blood 102(2), 497–505.

    Article  PubMed  CAS  Google Scholar 

  27. Labrecque, N., Whitfield, L. S., Obst, R., Waltzinger, C., Benoist, C., and Mathis, D. (2001) How much TCR does a T cell need? Immunity 15, 71–82.

    Article  PubMed  CAS  Google Scholar 

  28. Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892.

    PubMed  CAS  Google Scholar 

  29. Schumacher, T. N. (2002) T-cell-receptor gene therapy. Nat Rev Immunol 7, 512–519.

    Article  Google Scholar 

  30. Eshhar, Z. (1997) Tumor-specific T-bodies: towards clinical application. Cancer Immunol. Immunother. 45, 131–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Kessels, H.W.H.G., Wolkers, M.C., Schumacher, T.N.M. (2005). Gene Transfer of MHC-Restricted Receptors. In: Ludewig, B., Hoffmann, M.W. (eds) Adoptive Immunotherapy: Methods and Protocols. Methods in Molecular Medicine™, vol 109. Humana Press. https://doi.org/10.1385/1-59259-862-5:201

Download citation

  • DOI: https://doi.org/10.1385/1-59259-862-5:201

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-406-7

  • Online ISBN: 978-1-59259-862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics