Skip to main content

Carbon Nanotubes and Nanowires for Biological Sensing

  • Protocol
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 300))

Summary

This chapter reviews the recent development in biological sensing using nanotechnologies based on carbon nanotubes and various nanowires. These 1D materials have shown unique properties that are efficient in interacting with biomolecules of similar dimensions, i.e., on a nanometer scale. Various aspects including synthesis, materials properties, device fabrication, biofunctionalization, and biological sensing applications of such materials are reviewed. The potential of such integrated nanobiosensors in providing ultrahigh sensitivity, fast response, and high-degree multiplex detection, yet with minimum sample requirements is demonstrated. This chapter is intended to provide comprehensive updated information for people from a variety of backgrounds but with common interests in the fast-moving interdisciplinary field of nanobiotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K., and Dai, H. (2000) Nanotube molecular wires as chemical sensors. Science 287, 622–625.

    PubMed  CAS  Google Scholar 

  2. Li, J. and Ng, H. T. (2004) Carbon nanotube sensors, in Encyclopedia of Nanoscience and Nanotechnology (Nalwa, H. S., ed.), American Scientific Publishers, Santa Barbara, CA, Vol. 1, 591–601.

    Google Scholar 

  3. Cui, Y., Wei, Q., Park, H., and Lieber, C. M. (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292.

    PubMed  CAS  Google Scholar 

  4. Li, C., Zhang D., Liu X., Han, S., Tang, T., Han, J., and Zhou C. (2003) In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82(10), 1613–1615.

    CAS  Google Scholar 

  5. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (ed.). (1996) Science of Fullerenes and Carbon Nanotubes, Academic, New York.

    Google Scholar 

  6. Ebbessen, T. W. (1997) Carbon Nanotubes: Preparation and Properties, CRC Press, Boca Raton, FL.

    Google Scholar 

  7. Saito, R., Dresselhaus, M. S., and Dresselhaus, G. (1998) Physical Properties of Carbon Nanotubes, World Scientific, New York.

    Google Scholar 

  8. Tománek, D. and Enbody, R. (2000) Science and Application of Nanotubes, Kluwer Academic, New York.

    Google Scholar 

  9. Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354, 56–58.

    CAS  Google Scholar 

  10. Iijima, S. and Ichihashi, T. (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605.

    CAS  Google Scholar 

  11. Dai, H. (2002) Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35(12), 1035–1044.

    PubMed  CAS  Google Scholar 

  12. Collins, P. G., Arnold, M. S., and Avouris, P. (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709.

    PubMed  CAS  Google Scholar 

  13. Tans, S. J., Verschueren, A. R. M., and Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52.

    CAS  Google Scholar 

  14. Fuhrer, M. S., Nygard, J., Shih, L., et al. (2000) Crossed nanotube junctions. Science 288, 494–497.

    PubMed  CAS  Google Scholar 

  15. Zhou, C. W., Kong, J., Yenilmez, E., and Dai, H. (2000) Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555.

    PubMed  CAS  Google Scholar 

  16. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L., and Lieber, C. M. (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97.

    PubMed  CAS  Google Scholar 

  17. Derycke, V., Martel, R., Appenzeller, J., and Avouris, P. (2001) Carbon nanotube inter-and intramolecular logic gates. Nano Lett. 1(9), 453–456.

    CAS  Google Scholar 

  18. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C. (2001) Logic circuits with carbon nanotube transistors. Science 294, 1317–1320.

    PubMed  CAS  Google Scholar 

  19. Liu, X. L., Lee, C., Zhou, C. W., and Han, J. (2001) Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79(20), 3329–3331.

    CAS  Google Scholar 

  20. Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P. L. (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2(8), 869–872.

    CAS  Google Scholar 

  21. Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., and Poulin, P. (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334.

    PubMed  CAS  Google Scholar 

  22. de Heer, W. A., Chatelain, A., and Ugarte, D. (1995) A carbon nanotube field-emission electron source. Science 270, 1179, 1180.

    Google Scholar 

  23. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E. (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553.

    PubMed  CAS  Google Scholar 

  24. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150.

    CAS  Google Scholar 

  25. Wong, S., Joselevich, E., Woolley, A., Cheung, C., and Lieber, C. M. (1998) Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 394, 52–55.

    PubMed  CAS  Google Scholar 

  26. Li, J., Cassell, A., and Dai, H. (1999) Carbon nanotubes as AFM tips: measuring DNA molecules at the liquid/solid interfaces. Surf. Interface Anal. 28, 8–11.

    Google Scholar 

  27. Nguyen, C. V., Chao, K. J., Stevens, R. M. D., Delzeit, L., Cassell, A., Han, J., and Meyyappan, M. (2001) Nanotechnology 12, 363–367.

    CAS  Google Scholar 

  28. Liu, C. F., Fan, Y. Y., Liu, M., Cong, H. T., Chen, H. M., and Dresselhaus, M. S. (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286, 1127–1129.

    PubMed  CAS  Google Scholar 

  29. Che, G., Lakshmi, B. B., Fisher, E. R., and Martin, C. R. (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349.

    CAS  Google Scholar 

  30. Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A. (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804.

    PubMed  CAS  Google Scholar 

  31. Sumanasekera, G. U., Adu, C. K. W., Fang, S., and Eklund, P. C. (2000) Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85(5), 1096–1099.

    PubMed  CAS  Google Scholar 

  32. Ng, H. T., Fang, A., Li, J., and Li, S. F. Y. (2001) Flexible carbon nanotube membrane sensory system: a generic platform. J. Nanosci. Nanotechnol. 1(4), 375–379.

    PubMed  CAS  Google Scholar 

  33. Besteman, K., Lee, J.-O., Wiertz, F. G. M., Heering, H. A., and Dekker, C. (2003), Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3(6), 727–730.

    CAS  Google Scholar 

  34. Star, A., Gabriel, J.-C. P., Bradley K., and Gruner, G. (2003), Electronic detection of specific protein binding using nanotube FET devices. Nano Lett., in press.

    Google Scholar 

  35. Li, J., Ng, H. T., Cassell, A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., and Meyyappan, M. (2003), Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3(5), 597–602.

    CAS  Google Scholar 

  36. Li, J., Cassell, A., Delzeit, L., Han, J., and Meyyappan, M. (2002) Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 106, 9299–9305.

    CAS  Google Scholar 

  37. Sotiropoulou, S. and Chaniotakis, N. A. (2003) Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 375, 103–105.

    PubMed  CAS  Google Scholar 

  38. Walter, E. C., Penner R. M., Liu, H., Ng, K. H., Zach, M. P., and Favier, F. (2002) Sensors from electrodeposited metal nanowires. Surf. Interface Anal. 34, 409–412.

    CAS  Google Scholar 

  39. Morales, A. M. and Lieber, C. M. (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211.

    PubMed  CAS  Google Scholar 

  40. Huang, M. H., Mao, S. Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P. (2001) Room-temperature ultraviolet nanowires nanolasers. Science 292, 1897–1899.

    PubMed  CAS  Google Scholar 

  41. Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., and Mioskowski, C. (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew. Chem. Int. Ed. 38(13/14), 1912–1915.

    CAS  Google Scholar 

  42. Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G. (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778.

    PubMed  CAS  Google Scholar 

  43. Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607.

    CAS  Google Scholar 

  44. Thess, A., Lee, R., Nikolaev, P., et al. (1996) Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487.

    PubMed  CAS  Google Scholar 

  45. Kajiura, H., Tsutsui, S., Huang, H., Miyakoshi, M., Hirano, Y., Yamada, A., and Ata, M. (2001) Production of single-walled carbon nanotube ropes under controlled gas flow conditions. Chem. Phys. Lett. 346, 356–360.

    CAS  Google Scholar 

  46. Journet, C., Maser, W., Bernier, P., Loiseau, A., Delachapelle, M., Lefrant, S., Deniard, P., Lee, R., and Fischer, J. (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758.

    CAS  Google Scholar 

  47. Kong, J., Cassell, A. M., and Dai, H. (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574.

    CAS  Google Scholar 

  48. Su, M., Zheng, B., and Liu, J. (2000) A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322, 321–326.

    CAS  Google Scholar 

  49. Colomer, J.-F., Stephan, C., Lefrant, S., Tendeloo, G., Willems, I., Kónya, Z., Fonseca, A., Laurent, C., and Nagy, J. (2000) Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317, 83–89.

    CAS  Google Scholar 

  50. Flahaut, E., Govingaraj, A., Peigney, A., Laurent, C., and Rao, C. N. R. (1999) Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett. 300, 236–242.

    CAS  Google Scholar 

  51. Hafner, J., Bronikowski, M., Azamian, B., Nikolaev, P., Colbert, D., and Smalley, R. E. (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195–202.

    CAS  Google Scholar 

  52. Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A., and Smalley, R. E. (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J. Vac. Sci. Technol. A 19, 1800–1805.

    CAS  Google Scholar 

  53. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N. (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107.

    PubMed  CAS  Google Scholar 

  54. Delzeit, L., McAninch, I., Cruden, B. A., Hash, D., Chen, B., Han, J., and Meyyappan, M. (2002) Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91, 6027–6033.

    CAS  Google Scholar 

  55. Li, J., Ye, Q., Cassell, A., Ng, H. T., Stevens, R., Han, J., and Meyyappan, M. (2003) Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett. 82(15), 2491–2493.

    CAS  Google Scholar 

  56. Stejny, J. J. Trinder, R. W., and Dlugosz, J. (1981) Preparation and structure of poly(sulphur nitride) whiskers. J. Mater. Sci. 16, 3161–3170.

    CAS  Google Scholar 

  57. Golden, J. H., DiSalvo, F. J., Frecht, J. M. J., Silcox, J., Thomas, M., and Elman, J. (1996) Subnanometer-diameter wires isolated in a polymer matrix by fast polymerization. Science 273, 782–785.

    PubMed  CAS  Google Scholar 

  58. Venkataraman, L. and Lieber, C. M. (1999) Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 83, 5334–5337.

    CAS  Google Scholar 

  59. Gates, B., Mayers, B., Cattle, B., and Xia, Y. (2002) Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 12, 219–227.

    CAS  Google Scholar 

  60. Limmer, S. J. Seraji, S., Wu, Y., Chou, T. P., Nguyen, C., and Cao, G. (2002) Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv. Funct. Mater. 12, 59–64.

    CAS  Google Scholar 

  61. Barbic, M., Mock, J. J., Smith, D. R., and Schultz, S. (2002) Single crystal silver nanowires prepared by the metal amplification method. J. Appl. Phys. 91, 9341–9345.

    CAS  Google Scholar 

  62. Molares, M. E. T., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I. U., and Vetter, J. (2001) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater. 13, 62–65.

    CAS  Google Scholar 

  63. Müller, T., Heinig, K.-H., and Schmidt, B. (2001) Formation of Ge nanowires in oxidized silicon V-grooves by ion beam synthesis. Nucl. Instrum. Methods Phys. Res. 175, 468–473.

    Google Scholar 

  64. Sugawara, A., Coyle, T., Hembree, G. G., and Scheinfein, M. R. (1997) Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates. Appl. Phys. Lett. 70, 1043–1045.

    CAS  Google Scholar 

  65. Xia, Y., Yang, P. Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H. (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389.

    CAS  Google Scholar 

  66. Zhang, Y., Wang, N., Gao, S., He, R., Maio, S., Liu, J., Zhu, J., and Zhang, X. (2002) A simple method to synthesize nanowires. Chem. Mater. 14, 3564–3568.

    CAS  Google Scholar 

  67. Yang, P. and Lieber, C. M. (1997) Nanostructured high-temperature superconductors: creation of strong-pinning columnar defects in nanorod/superconductor composites. J. Mater. Res. 12, 2981–2996.

    CAS  Google Scholar 

  68. Shi, W.-S., Peng, H.-Y., Zheng, Y.-F., Wang, N., Shang, N.-G., Pan, Z.-W., Lee, C.-S., and Lee, S.-T. (2000) Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 12, 1343–1345.

    CAS  Google Scholar 

  69. Duan, X. F. and Lieber, C. M. (2000) General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302.

    CAS  Google Scholar 

  70. Wu, Y. and Yang, P. (2000) Germanium nanowire growth via simple vapor transport. Chem. Mater. 12, 605–607.

    CAS  Google Scholar 

  71. Chen, C. C., Yeh, C. C., Chen, C. H., Yu, M. Y., Liu, H. L., Wu, J. J., Chen, K. H., Chen, L. C., Peng, J. Y., and Chen, Y. F. (2001) Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791–2798.

    PubMed  CAS  Google Scholar 

  72. Wang, Y. W., Zhang, L. D., Liang, C. H., Wang, G. Z., and Peng, X. S. (2002) Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 357, 314–318.

    CAS  Google Scholar 

  73. Huang, M. H., Feick, H., Webber, E., and Yang, P. (2001) Catalytic growth of zinc oxide nanowires through vapor transport. Adv. Mater. 13, 113–116.

    CAS  Google Scholar 

  74. Vo-Dinh, T., Alarie, J.-P., Cullum, B. M., and Griffin, G. D. (2000) Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat. Biotechnol. 18, 764–767.

    PubMed  CAS  Google Scholar 

  75. Campbell, J. K., Sun, L., and Crooks, R. M. (1999) Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779–3780.

    CAS  Google Scholar 

  76. Bard, A. J. (1994) Integrated Chemical Systems: A Chemical Approach to Nanotechnology, John Wiley & Sons, New York, pp. 27–33.

    Google Scholar 

  77. Zhao, J., Buldum, A., Han, J., and Lu, J. P. (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200.

    CAS  Google Scholar 

  78. Guiseppi-Elie, A., Lei, C., and Baughman, R. H. (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13, 559–564.

    CAS  Google Scholar 

  79. Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., and Green, M. L. H. (2002) Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 12,664, 12,665.

    PubMed  CAS  Google Scholar 

  80. Musameh, M., Wang, J., Merkoci, A., and Lin, Y. (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 4, 743–746.

    CAS  Google Scholar 

  81. Kuhr, W. G. (2000) Electrochemical DNA analysis comes of age. Nat. Biotechnol. 18, 1042, 1043.

    PubMed  CAS  Google Scholar 

  82. Sosnowski, R. G., Tu, E., Butler, W. F., O’Connell, J. P., and Heller, M. J. (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. USA 94, 1119–1123.

    PubMed  CAS  Google Scholar 

  83. Umek R. M., Lin, S. W., Vielmetter, J., et al. (2001) Electronic detection of nucleic acids: a versatile platform for molecular diagnosis. J. Mol. Diagn. 3(2), 74–84.

    PubMed  CAS  Google Scholar 

  84. Popovich, N. D. and Thorp H. H. (2002) New strategies for electrochemical nucleic acid detection. Interface 11(4), 30–34.

    CAS  Google Scholar 

  85. Wightman, R. M. (1981) Microvoltammetric electrodes. Anal. Chem. 53, 1125A–1134A.

    CAS  Google Scholar 

  86. Penner, R. M., Heben, M. J., Longin, T. L., and Lewis, N. S. (1990) Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 250, 1118–1121.

    PubMed  CAS  Google Scholar 

  87. Fan, F.-R. F. and Bard, A. J. (1995) Electrochemical detection of single molecules. Science 267, 871–874.

    PubMed  CAS  Google Scholar 

  88. Li, J., Stevens, R., Delzeit, L., Ng, H. T., Cassell, A. M., Han, J., and Meyyappan, M. (2002) Electronic properties of multiwalled carbon nanotubes in an embedded vertical array. Appl. Phys. Lett. 81(5), 910–912.

    CAS  Google Scholar 

  89. McCreery, R. L. (1991) Carbon electrodes: structural effects on electron transfer kinetics, in Electroanalytical Chemistry vol. 17 (Bard, A. J., ed.), Marcel Dekker, New York, pp. 221–374.

    Google Scholar 

  90. Nugent, J. M., Santhanam, R. A., and Ajayan, P. M. (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 1(2), 87–91.

    CAS  Google Scholar 

  91. Wong, S. S., Woolley, A. T., Joselevich, E., Cheung, C. L., and Lieber, C. M. (1998) Covalent-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc. 120, 8557, 8558.

    CAS  Google Scholar 

  92. Williams, K. A., Veenhuizen, P. T. M., De la Torre, B. G., Eritja, R., and Dekker, C. (2002) Carbon nanotubes with DNA recognition. Nature 429, 761.

    Google Scholar 

  93. Nguyen, C. V., Delzeit, L., Cassell, A. M., Li, J., Han, J., and Meyyappan, M. (2002) Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2(10), 1079–1081.

    CAS  Google Scholar 

  94. Chen, R. J., Zhang, Y., Wang, D., and Dai, H. (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838, 3839.

    PubMed  CAS  Google Scholar 

  95. Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., and Dai, H. (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288.

    CAS  Google Scholar 

  96. Dieckmann, G. R., Dalton, A. B., Johnson, P. A., et al. (2003) Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc. 125(7), 1770–1777.

    PubMed  CAS  Google Scholar 

  97. Sun, Y.-P., Fu, K., Lin, Y., and Huang, W. (2002) Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35, 1096–1104.

    PubMed  CAS  Google Scholar 

  98. Wang, S., Humphreys, E. S., Chung, S. Y., et al. (2003) Peptides with selective affinity for carbon nanotubes. Nat. Mater. 2(3), 196–200.

    PubMed  Google Scholar 

  99. Ulman, A. (1991) An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic, New York.

    Google Scholar 

  100. Guo, Z., Guilfoyle, R. A., Thiel, A. J., Wang, R., and Smith, L. M. (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22(24), 5456–5465.

    PubMed  CAS  Google Scholar 

  101. Beier, M. and Hoheisel, J. D. (1999) Versatile derivatisation of solid support media for covalent bonding on DNA-microchips. Nucleic Acids Res. 27(9), 1970–1977.

    PubMed  CAS  Google Scholar 

  102. Vo-Dinh, T. (2002) Nanobiosensors: probing the sanctuary of individual living cells. J. Cell. Biochem. Suppl. 39, 154–161.

    PubMed  Google Scholar 

  103. Vo-Dinh, T., Cullum, B. M., and Stokes, D. L. (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens. Actuators B 74, 2–11.

    Google Scholar 

  104. Johnson, J. C., Yan, H., Schaller, R., Haber, L. H., Saykally, R. J., and Yang, P. (2001) Single nanowires lasers. J. Phys. Chem. tB 105(46), 11,387–11,390.

    CAS  Google Scholar 

  105. Woolley, A. T., Guillemette, C., Cheung, C. L., Housman, D. H., and Lieber, C. M. (2000) Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nat. Biotechnol. 18, 760–763.

    PubMed  CAS  Google Scholar 

  106. Andrew, T. and Mirkin, C. A. (2000) Haplotyping by force. Nat. Biotechnol. 18, 713.

    Google Scholar 

  107. Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., and Ding, W. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–69.

    PubMed  CAS  Google Scholar 

  108. Sistare, M. F., Holmberg, R. C., and Thorp, H. H. (1999) Electrochemical studies of polynucleotide binding and oxidation by metal complexes: effects of scan rate, concentration, and sequence. J. Phys. Chem. B 103, 10,718–10,728.

    CAS  Google Scholar 

  109. Guo, Z., Sadler, P. J., and Tsang, S. C. (2002) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 10(9), 701–703.

    Google Scholar 

  110. Braden, B. C. (2000) X-ray crystal structure of an anti-Buckminsterfullerene antibody Fab fragment: biomolecular recognition of C60. Proc. Natl. Acad. Sci. USA 97, 12,193–12,197.

    PubMed  CAS  Google Scholar 

  111. Erlanger, B. F., Chen, B.-X., Zhu, M., and Brus, L. (2001) Binding of an antifullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Lett. 1, 465–467.

    CAS  Google Scholar 

  112. Saxl, O. (2001) Opportunities for industry in the application of nanotechnology. The Institute of Nanotechnology, Stirling, Scotland (http://www.nano.org.uk/contents.htm).

    Google Scholar 

  113. Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., and Braun, E. (2002) Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75.

    PubMed  CAS  Google Scholar 

  114. Ford, W., Harnack, O., Yasuda, A., and Wessels, J. M. (2001) Platinated DNA as precursors to templated chains of metal nanoparticles. J. Adv. Mater. 13, 1793–1797.

    CAS  Google Scholar 

  115. Seidel, R., Mertig, M., and Pompe, W. M. (2002) Scanning force microscopy of DNA metallization. Surf. Interface Anal. 33, 151–154.

    CAS  Google Scholar 

  116. Richter, J., Seidel, R., Kirsh, R., Mertig, M., Pompe, W., Plaschke, J., and Schackert, H. K. (2000) Nanoscale palladium metallization of DNA. Adv. Mater. 12, 507–510.

    CAS  Google Scholar 

  117. Richter, J., Mertig, M., Pompe, W., Mönch, I., and Schackert, H. K. (2001) Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78, 536–538.

    CAS  Google Scholar 

  118. Christopher, A., Monon, F., and Woolley, A. T. (2003) DNA-templated construction of copper nanowires. Nano Lett. 3(3), 359–363.

    Google Scholar 

  119. Harnack, O., Ford, W. E., Yasuda, A., and Wessels, J. M. (2002) Tris(hydroxymethyl) phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Lett. 2(9), 919–923.

    CAS  Google Scholar 

  120. Patolsky, F., Weizmann, Y., Lioubashevski, O., and Willner, I. (2002) Au-nanoparticle nanowires based on DNA and polylysine templates. Angew. Chem. Int. Ed. 41(13), 2323–2327.

    CAS  Google Scholar 

  121. Djalali, R., Chen, Y., and Matsui, H. (2002) Au nanowire fabrication from sequenced histidine-rich peptide. J. Am. Chem. Soc. 124(46), 13,660–13,661.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. M. Meyyappan, Jie Han, Alan Cassell, Wendy Fan, and Harry Partridge for encouragement and technical discussions during preparation of the manuscript. This work was supported by a NASA contract.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Li, J., Ng, H.T., Chen, H. (2005). Carbon Nanotubes and Nanowires for Biological Sensing. In: Vo-Dinh, T. (eds) Protein Nanotechnology. Methods in Molecular Biology™, vol 300. Humana Press. https://doi.org/10.1385/1-59259-858-7:191

Download citation

  • DOI: https://doi.org/10.1385/1-59259-858-7:191

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-310-7

  • Online ISBN: 978-1-59259-858-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics