Skip to main content

Clinical Studies of Antisense Oligonucleotides for Cancer Therapy

  • Protocol
Antisense Therapeutics

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 106))

  • 411 Accesses

Abstract

Until now, the clinical demise of cancer has relied on surgical resection and the inhibition of tumor cell proliferation using ionizing radiation or chemotherapeutic drugs designed to perturb DNA synthesis or the mitotic event. The development of cytotoxic agents has resulted in improvements in the treatment of leukemia, lymphoma, testicular cancer, and many other solid tumor types (1). Hormone-based drugs have also been useful for breast and prostate cancers (2). Although much success has been achieved, cytotoxic modalities walk the therapeutic tightrope of toxicities to normal tissues vs cancer cells, and drug resistance is generally present de novo or develops with treatment. Over the last decade or so, more attention has been focused on different therapeutic approaches. These include the development of monoclonal antibodies (MAbs) to specifically target cancer cells, and small molecule-inhibitors of cell-signaling pathways that have been linked to oncogenesis or maintenance of the malignant phenotype. For example, the former approach has seen the development and licensing of Herceptin® (trastuzumab; Genentech/Roche), a humanized MAb that targets erbB2/HER2, a receptor tyrosine kinase that is overexpressed in some 30% of breast cancers and has shown promising clinical activity when used in combination with other drugs for the treatment of metastatic breast cancer (35). Promising small-molecule inhibitors of cell-signaling pathways include Gleevec™ (STI571, imitanib mesylate; Novartis) and Iressa™ (ZD1839, gefitinib; AstraZeneca).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sikora, K., Advani, S., Koroltchouk, V, et al. (1999) Essential drugs for cancer therapy: a World Health Organisation consultation. Ann. Oncol. 10, 385–390.

    Article  PubMed  CAS  Google Scholar 

  2. De Vita, V. T., Hellman S., and Rosenberg, S. A., eds. (2001) Cancer: Principles and Practice of Ooncology, 6th ed. Lippincott, Philadelphia.

    Google Scholar 

  3. Goldenberg, M. M. (1999) Trastuzumab, a recombinant DNA-derived humanised monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin. Ther. 21, 309–318.

    Article  PubMed  CAS  Google Scholar 

  4. Shak, S. (1999) Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical programme in HER2 overexpressing metastatic breast cancer. Herceptin multinational investigator group. Semin. Oncol. 26, 71–77.

    PubMed  CAS  Google Scholar 

  5. Slamon, D., Leyland-Jones, B., Skak, S, et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792.

    Article  PubMed  CAS  Google Scholar 

  6. O’Dwyer, M. E. and Druker, B. J. (2001) The role of the tyrosine kinase inhibitor STI571 in the treatment of cancer. Curr. Cancer Drug Targets 1, 49–57.

    Article  Google Scholar 

  7. Druker, B. J., Sawyers, C. L., Kantarjian, H, et al. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  8. Gorre, M. E., Mohammed, M., Ellwood, K, et al. (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL mutation or amplification. Science 293, 876–880.

    Article  PubMed  CAS  Google Scholar 

  9. Baselga, J. and Averbuch, S. D. (2000) ZD1839 (“Iressa”), as an anticancer agent. Drugs 60, 33–40.

    Article  PubMed  CAS  Google Scholar 

  10. Ronson, M., Hammond, L. A., Ferry, D, et al. (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: Results of a phase I trial. .J. Clin. Oncol. 20, 2240–2250.

    Article  Google Scholar 

  11. Crooke, S. T. (2000) Progress in antisense technology: the end of the beginning, in Methods in Enzymology (Phillips, M. I., ed.), Academic, San Diego, pp. 3–45.

    Google Scholar 

  12. Orr, R. M. and O’Neill, C. F. (2000) Patent review: therapeutic applications for antisense oligonucleotides 1999–2000. Curr. Opin. Mol. Ther. 2, 325–331.

    PubMed  CAS  Google Scholar 

  13. Orr, R. M. (2001) Technology evaluation: Fomivirsen, Isis Pharmaceuticals Inc/CIBA Vision. Curr. Opin. Mol. Ther. 3, 288–294.

    PubMed  CAS  Google Scholar 

  14. Amundson, S. A., Myers, T. G., and Fornace, A. J. Jr. (1998) Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17, 3287–3299.

    Article  PubMed  Google Scholar 

  15. Imamura, J., Miyoshi, I., and Koeffler, H. P. (1994) p53 in hematologic malignancies. Blood 84, 2412–2421.

    PubMed  CAS  Google Scholar 

  16. Bayever, E., Haines, K. M., Iverson, P. L, et al. (1994) Selective cytotoxicity to human leukemic myeloblasts produced by oligodeoxyribonucleotide phosphorothioates complementary to p53 nucleotide sequences. Leuk. Lymphoma 12, 223–231.

    Article  PubMed  CAS  Google Scholar 

  17. Bishop, M. R., Iversen, P. L., Bayever, E, et al. (1996) Phase I trial of an antisense oligonucleotide OL(1)p53 in hematologic malignancies. J. Clin. Oncol. 14, 1320–1326.

    PubMed  CAS  Google Scholar 

  18. Sharp, J. G., Bishop, M. R., Copple, B, et al. (2001) Oligonucleotide enhanced cytotoxicity of Idarubicin for lymphoma cells. Leuk. Lymphoma 42, 417–427.

    Article  PubMed  CAS  Google Scholar 

  19. Weston, K. (1999) Reassessing the role of C-MYB in tumorigenesis. Oncogene 18, 3034–3038.

    Article  PubMed  CAS  Google Scholar 

  20. Gewirtz, A. M. (1997) Developing oligonucleotide therapeutics for human leukemia. Anti-Cancer Drug Des. 12, 341–358.

    CAS  Google Scholar 

  21. Orr, R. M. (1999) Technology evaluation: leukemia therapy, University of Pennsylvania. Curr. Opin. Mol. Ther. 1, 399–403.

    PubMed  CAS  Google Scholar 

  22. Calabretta, B., Sims, R. B., Valtieri, M, et al. (1991) Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb AS oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc. Natl. Acad. Sci. USA 88, 2351–2355.

    Article  PubMed  CAS  Google Scholar 

  23. Ratajczak, M. Z., Hijiya, N, Catani, L, et al. (1992) Acute-and chronic-phase chronic myelogenous leukemia colony-forming units are highly sensitive to the growth inhibitory effects of c-myb AS oligodeoxynucleotides. Blood 79, 1956–1961.

    PubMed  CAS  Google Scholar 

  24. Ratajczak, M. Z., Kant, J. A., Luger, S. M, et al. (1992) In vivo treatment of human leukemia in a scid mouse model with c-myb AS oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 89, 11823–11827.

    Article  PubMed  CAS  Google Scholar 

  25. Luger, S. M., O’Brien, S. G, Ratajczak, J, et al. (2002) Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99, 1150–1158.

    Article  PubMed  CAS  Google Scholar 

  26. De Fabritiis, P., Petti, M. C, Montefusco, E, et al. (1998) BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood 91, 3156–3162.

    PubMed  Google Scholar 

  27. Dhut, S., Chaplin, T., and Young, B. (1990) BCR-ABL and BCR proteins: Biochemical characterization and localization. Leukemia 4, 745–750.

    PubMed  CAS  Google Scholar 

  28. Clarke, R. E., Grzybowski, J., Broughton, C. M, et al. (1999) Clinical use of streptolysin-O to facilitate antisense oligodeoxynucleotide delivery for purging autografts in chronic myeloid leukaemia. Bone Marrow Transplant. 23, 1303–1308.

    Article  Google Scholar 

  29. Reed, J. C, Tsujimoto, Y., Epstein, S, et al. (1989) Regulation of bcl-2 gene expression in lymphoid cell lines containing t(14∶18) or normal #18 chromosomes. Oncogene Res. 4, 271–282.

    PubMed  CAS  Google Scholar 

  30. Cotter, F. E. (1993) Molecular pathology of lymphoma, in The Molecular Pathology of Cancer (Lemoine, N. R. and Wright, N. A., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 157–174.

    Google Scholar 

  31. Hockenberry, D., Nunez, G., Milliman, C, Schreiber, R. D., and Korsmeyer, S. J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature (Lond.) 348, 334–336.

    Article  Google Scholar 

  32. Cotter, F. E., Johnson, P., Hall, P, et al. (1994) Antisense oligonucleotides suppress B-cell lymphoma growth in a scid-hu mouse model. Oncogene 9, 3049–3055.

    PubMed  CAS  Google Scholar 

  33. Cotter, F. E., Corbo, M., Raynaud, F, et al. (1996) Bcl-2 antisense therapy in lymphoma: in vitro and in vivo mechanisms, efficacy, pharmacokinetic and toxicity studies. Ann. Oncol. 7, 3 (abstract).

    Google Scholar 

  34. Waters, J. S., Webb, A., Cunningham, D, et al. (2000) Phase I clinical and pharmacokinetic study of Bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J. Clin. Oncol. 18, 1812–1823.

    PubMed  CAS  Google Scholar 

  35. Leonard, J. P., Coleman, M., Vose, J, et al. (2003) Phase II study of oblimersen sodium (G3139) alone and with R-CHOP in mantle cell lymphoma (MCL). Proc. Am. Soc. Clin. Oncol. 22, 566 (abstract).

    Google Scholar 

  36. Klasa, R. J., Gillum, A. M., Klem, R. E., and Frankel, S. R. (2002) Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev., 12, 193–213.

    Article  PubMed  CAS  Google Scholar 

  37. Tauchi, T., Nakajima, A., Sumi, M., Shimamoto, T., Sashida, G, and Ohyashiki, K. (2002) G3139 (Bcl-2 antisense oligonucleotide) is active against Gleevec-resistant BCR-ABL-positive cells. Proc. Am. Assoc. Cancer Res. 43, 4702 (abstract).

    Google Scholar 

  38. Marcucci, G., Byrd, J. C, Dai, G., et al. (2003) Phase I and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed leukemia. Blood 101, 425–432.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, H. X., Marshall, J. L., Trocky, N, et al. (2000) A phase I study of BCL-2 antisense G3139 (GENTA) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Proc. Am. Soc. Clin. Oncol. 19, 692 (abstract).

    Google Scholar 

  40. Grover, R. and Wilson, G. D. (1996) Bcl-2 expression in malignant melanoma and its prognostic significance. Eur. J. Surg. Oncol. 22, 347–349.

    Article  PubMed  CAS  Google Scholar 

  41. Jansen, B., Wacheck, V., Heere-Ress, E, et al. (2000) Chemosensitisation of malignant melanoma by BCL-2 antisense therapy. Lancet 356, 1728–1733.

    Article  PubMed  CAS  Google Scholar 

  42. Jansen, B., Wacheck, V., Heere-Ress, E, et al. (2001) Clinical, pharmacologic, and pharmacodynamic study of Genasense (G3139, Bcl-2 antisense oligonucleotide) and dacarbazine (DTIC) in patients with malignant melanoma. Proc. Am. Soc. Clin. Oncol. 20, 1426 (abstract).

    Google Scholar 

  43. Chi, K.N., Murray, R.N., Gleave, M.E., et al. (2003) A phase II study of oblimersen sodium (G3139) and docetaxel (D) in patients (pts) with metastatic hormone-refractory prostate cancer (HRPC). Proc. Am. Soc. Clin. Oncol. 22, 393 (abstract).

    Google Scholar 

  44. Rudin, C. M., Otterson, G. A., Mauer, A. M, et al. (2002) A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann. Oncol. 13, 539–545.

    Article  PubMed  CAS  Google Scholar 

  45. Daum, G., Eisenmann-Tappe, I., Fries, H. W., Troppmair, J., and Rapp, U. R. (1994) The ins and outs of Raf kinases. Trends Biol. Sci. 19, 474–480.

    Article  CAS  Google Scholar 

  46. McCormick, F. (1995) Ras-related proteins in signal transduction and growth control. Mol. Reprod. Dev. 42, 500–506.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, H.-G., Rapp, U. R., and Reed, J. C. (1996) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638.

    Article  PubMed  CAS  Google Scholar 

  48. Monia, B. P., Johnston, J. F., Geiger, T., Muller, M., and Fabbro, D. (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against c-raf kinase. Nature Med. 2, 668–675.

    Article  PubMed  CAS  Google Scholar 

  49. ISIS 5132 investigator’s brochure. (1998) Isis Pharmaceuticals Inc., Carlsbad, CA.

    Google Scholar 

  50. Stevenson, J. P., Yao, K-S., Gallagher, M, et al. (1999) Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J. Clin. Oncol. 17, 2227–2236.

    PubMed  CAS  Google Scholar 

  51. O’Dwyer, P. J., Stevenson, J. P., Gallagher, M, et al. (1999) c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleotide ISIS 5132 (CGP 69846A). Clin. Cancer Res. 5, 3977–3982.

    Google Scholar 

  52. Cunningham, C. C, Holmlund, J. T., Schiller, J. H, et al. (2000) A phase I trial of c-raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 6, 1626–1631.

    PubMed  CAS  Google Scholar 

  53. Rudin, C. M., Holmlund, J., Fleming, G F, et al. (2001) Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 2-hour weekly infusion to patients with advanced cancer. Clin. Cancer Res. 7, 1214–1220.

    PubMed  CAS  Google Scholar 

  54. Stevenson, J. P., Gallagher, M., Ryan, W. F, et al. (1999) Phase I trial of the c-Raf-1 antisense oligonucleotide (ODN) ISIS 5132 administered as a 21-day continuous IV infusion in combination with 5-fluorouracil (5-FU) and leucovorin (LV) as a daily×5 IV bolus. Clin. Cancer Res. 5, 579 (abstract).

    Google Scholar 

  55. Oza, A.M., Elit, L., Swenerton, K, et al. (2003) Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials study group (NCIC IND. 116). Gynecol. Oncol. 89, 129–133.

    Article  PubMed  CAS  Google Scholar 

  56. Cripps, M. C, Figueredo, A. T., Oza, A. M, et al. (2002) Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin. Cancer Res. 8, 2188–2192.

    PubMed  CAS  Google Scholar 

  57. Nishizuka, Y. (1992) Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  58. Blobe, G. C, Obeid, L. M., and Hannun, Y. A. (1994) Regulation of protein kinase C and role in cancer therapy. Cancer Metastasis Rev. 13, 411–431.

    Article  PubMed  CAS  Google Scholar 

  59. Ways, D. K., Kukoly, C. A., deVente, J, et al. (1995) MCF-7 breast cancer cells transfected with protein kinase C-α exhibit altered expression of other protein kinase C isoforms and display a more aggressive phenotype. J. Clin. Invest. 95, 1906–1915.

    Article  PubMed  CAS  Google Scholar 

  60. Holmlund, J. T., Monia, B. P., Kwoh, J., and Dorr, F. A. (1999) Toward antisense oligonucleotide therapy for cancer: ISIS compounds in clinical development. Curr. Opin. Mol. Ther. 1, 372–385.

    PubMed  CAS  Google Scholar 

  61. Yazaki, T., Ahmad, S., Chahlavi, A, et al. (1996) Treatment of glioblastoma U-87 by systemic administration of an antisense protein kinase C-α phosphorothioate oligodeoxynucleotide. Mol. Pharmacol. 50, 236–242.

    PubMed  CAS  Google Scholar 

  62. Nemunaitis, J., Holmlund, J. T., Kraynak, M, et al. (1999) Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase c-alpha, in patients with advanced cancer. J. Clin. Oncol. 17, 3586–3595.

    PubMed  CAS  Google Scholar 

  63. Yuen, A. R., Halsey, J., Fisher, G. A, et al. (1999) Phase I study of an antisense oligonucleotide to protein kinase C-α (ISIS 3521/CGP 64128A) in patients with cancer. Clin. Cancer Res. 5, 3357–3363.

    PubMed  CAS  Google Scholar 

  64. Advani, R., Fisher, G. A., Grant, P, et al. (1999) A phase I trial of an antisense oligonucleotide targeted to protein kinase C-α (ISIS 3521/ISI641A) delivered as a 24-hour continuous infusion (CI). Proc. Am. Soc. Clin. Oncol. 18, 609(abstract).

    Google Scholar 

  65. Mani, S., Rudin, C. M., Kunkel, K, et al. (2002) Phase I clinical and pharmacokinetic study of protein kinase C-α antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin. Cancer Res. 8, 1042–1048.

    PubMed  CAS  Google Scholar 

  66. Emmanouilides, C. E., Saleh, A., Laufman, L, et al. (2002) Phase II trial of the efficacy and safety of ISIS 3521/LY900003, an antisense inhibitor of PKC-alpha, in patients with low-grade, non-Hodgkin’s lymphoma. Proc. Am. Soc. Clin. Oncol. 21, 1124 (abstract).

    Google Scholar 

  67. Gradishar, W. J., O’Neill, A., Cobleigh, M., Goldstein, L. J., and Davidson, N. E. (2001) A phase II trial with antisense oligonucleotide ISIS 3521/Cgp 64128a in patients (Pts) with metastatic breast cancer (MBC): ECOG trial 3197. Proc. Am. Soc. Clin. Oncol. 20, 171 (abstract).

    Google Scholar 

  68. Villalona-Calero, M. A., Figueroa, J., Nadella, P, et al. (2001) Phase I and pharmacokinetic (PK) study of the protein kinase C alpha (PKC-α) inhibitor ISIS-3521 in combination with cisplatin and gemcitabine in patients with solid malignancies. Clin. Cancer Res. 7, 132 (abstract).

    Google Scholar 

  69. Ritch, P. S., Belt, R., George, S, et al. (2002) Phase I/II trial of ISIS 3521/LY900003, an antisense inhibitor of PKC-alpha with cisplatin and gemcitabine in advanced non-small cell lung cancer. Proc. Am. Soc. Clin. Oncol. 21, 1233 (abstract).

    Google Scholar 

  70. Yuen, A., Sikic, B. I., Advani, R, et al. (1999) A phase I trial of ISIS 3521 (ISI641A), an antisense inhibitor of protein kinase C alpha, combined with carboplatin and paclitaxel in patients with cancer. Clin. Cancer Res. 5, 580 (abstract).

    Google Scholar 

  71. Yuen, A., Halsey, J., Fisher, G, et al. (2001) Phase II trial of ISIS 3521, an antisense inhibitor of PKC-α, with carboplatin and paclitaxel in non-small cell lung cancer: Updated survival and time to progression data. Clin. Cancer Res. 7, 140 (abstract).

    Google Scholar 

  72. Moore, M. R., Saleh, M., Jones, C. M, et al. (2002) Phase II trial of ISIS 3521/LY900003, an antisense inhibitor of PKC-alpha, with docetaxel in non-small cell lung cancer (NSCLC). Proc.Am. Soc. Clin. Oncol. 21, 1186 (abstract).

    Google Scholar 

  73. Yan, J., Roy, S., Apolloni, A., Lane, A., and Hancock, J. F. (1998) Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide-3-kinase. J. Biol. Chem. 273, 24,052–24,056.

    Article  PubMed  CAS  Google Scholar 

  74. Bos, J.L. (1989) Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.

    PubMed  CAS  Google Scholar 

  75. Chen, G., Oh, S., Monia, B. P., and Stacey, D. W. (1996) Antisense oligonucleotides demonstrate a dominant role of c-Ki-RAS proteins in regulating the proliferation of diploid human fibroblasts. J. Biol. Chem. 271, 28,259–28,265.

    Article  PubMed  CAS  Google Scholar 

  76. Cowsert, L. M. (1997) In vitro and in vivo activity of antisense inhibitors of ras: potential for clinical development. Anti-Cancer Drug Des. 12, 359–371.

    CAS  Google Scholar 

  77. Gordon, M. S., Sandler, A. B., Holmlund, J. T, et al. (1999) A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, administered by a 24-hour (hr) weekly infusion to patients (pts) with advanced cancer. Proc. Am. Soc. Clin. Oncol. 18, 604 (abstract).

    Google Scholar 

  78. Cunningham, C. C, Holmlund, J. T., Geary, R. S, et al. (2001) A phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92, 1265–1271.

    Article  PubMed  CAS  Google Scholar 

  79. Adjei, A. A., Dy, G. K., Erlichman, C, et al. (2003) A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. Clin. Cancer Res. 9, 115–123.

    PubMed  CAS  Google Scholar 

  80. Burch, P. A., Alberts, S. R., Schroeder, M. T, et al. (2003) Gemcitabine and ISIS 2503 for patients with pancreatic adenocarcinoma (ACA): a North Central Cancer Treatment Group (NCCTG) phase II study. Proc. Am. Soc. Clin. Oncol. 22, 259.

    Google Scholar 

  81. Friess, H., Kleef, J., Korc, M., and Buchler, M. W. (1999) Molecular aspects of pancreatic cancer and future perspectives. Dig. Surg. 16, 281–290.

    Article  PubMed  CAS  Google Scholar 

  82. Reichard, P. (1993) From RNA to DNA, why so many ribonucleotide reductases? Science 260, 1773–1777.

    Article  PubMed  CAS  Google Scholar 

  83. Fan, H. Z., Villegas, C, Huang, A., and Wright, J. A. (1998) The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res. 58, 1650–1653.

    PubMed  CAS  Google Scholar 

  84. Orr, R. M. (2001) GTI-2040 Lorus Therapeutics. Curr. Opin. Invest. Drugs 2, 1462–1466.

    CAS  Google Scholar 

  85. Wright, J. A., Feng, N. P., Jin, H. N., Wang, M., Lee, Y., and Young, A. (2001) GTI-2040, an outstanding antisense antitumor agent that targets the R2 component of human ribonucleotide reductase: from the laboratory to the clinic. Proc. Am. Assoc. Cancer Res. 42, 4559 (abstract).

    Google Scholar 

  86. Janisch, L. A., Schilsky, R. L., Vogelzang, N. J, et al. (2001) Phase I study of GTI-2040 by continuous intravenous infusion (CVI) in patients with advanced cancer. Proc. Am. Soc. Clin. Oncol. 20, 469 (abstract).

    Google Scholar 

  87. Tu, G. and Tu, X. (2001) GTI-2501 Lorus Therapeutics. Curr. Opin. Invest. Drugs 2, 1467–1470.

    CAS  Google Scholar 

  88. Wright, J. A., Feng, N. P., Jin, H. N., Wang, M., Lee, Y., and Young, A. (2001) GTI-2501, an outstanding antitumor agent that targets the R1 component of human ribonucleotide reductase. Proc. Am. Assoc. Cancer Res. 42, 4560 (abstract).

    Google Scholar 

  89. Cho-Chung, Y. S. and Clair, T. (1993) The regulatory subunit of cAMP-dependent protein kinase as a target for chemotherapy of cancer and other cellular dysfunctional-related diseases. Pharmacol. Ther. 60, 265–288.

    Article  PubMed  CAS  Google Scholar 

  90. Tortora, G, Damiano, V., Bianco, C, et al. (1997) The RIα subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor. Oncogene 14, 923–928.

    Article  PubMed  CAS  Google Scholar 

  91. McDaid, H. M., Cairns, M. T., Atkinson, R. J, et al. (1999) Increased expression of the RIα subunit of the c-AMP-dependent protein kinase A is associated with advanced stage ovarian cancer. Br. J. Cancer 79, 933–939.

    Article  PubMed  CAS  Google Scholar 

  92. Tortora, G., Caputo, R., Pomatico, G, et al. (1999) Cooperative inhibitory effect of novel mixed backbone oligonucleotide targeting protein kinase A in combination with docetaxel and anti-epidermal growth factor-receptor antibody on human breast cancer cell growth. Clin. Cancer Res. 5, 875–881.

    PubMed  CAS  Google Scholar 

  93. Cho, Y. S., Kim, M.-Y., Tan, L., Srivastava, R., Agrawal, S., and Cho-Chung, Y. S. (2002) Protein kinase A R1a antisense inhibition of PC3M prostate cancer cell growth: Bcl-2 hyperphosphorylation, Bax up-regulation and Bad hypophosphorylation. Clin. Cancer Res. 8, 607–614.

    PubMed  CAS  Google Scholar 

  94. Agrawal, S., Jiang, Z., Zhao, Q, et al. (1997) Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94, 2620–2625.

    Article  PubMed  CAS  Google Scholar 

  95. Tortora, G., Bianco, R., Damiano, V, et al. (2000) Oral antisense that targets protein kinase A cooperates with taxol and inhibits tumor growth, angiogenesis, and growth factor production. Clin. Cancer Res. 6, 2506–2512.

    PubMed  CAS  Google Scholar 

  96. Chen, H. X., Marshall, J. L., Ness, E, et al. (2000) A safety and pharmacokinetice study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors. Clin. Cancer Res. 6, 1259–1266.

    PubMed  CAS  Google Scholar 

  97. Goel, S., Desai, K., Bulgara, A, et al. (2003) A safety study of a mixed-backbone oligonucleotide (GEM231) targeting the type I regulatory subunit a of protein kinase A using a continuous infusion schedule in patients with refractory solid tumors. Clin. Cancer Res. 9, 4069–4076.

    PubMed  CAS  Google Scholar 

  98. Goel, S., Bulgaru, A., Desai, K., Martin, R. R., McKinlay, M., and Mani, S. (2003) Phase I trial using GEM 231, a second-generation antisense oligonucleotide targeting protein kinase A (PKA) RIa, in combination with docetaxel (D) in patients with advanced solid cancers. Proc. Am. Soc. Clin. Oncol. 22, 210.

    Google Scholar 

  99. Bavlin, S. B. (1997) Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science 277, 1948–1949.

    Article  Google Scholar 

  100. Fournel, M., Sapieha, P., Beaulieu, N., Besterman, J. M., and MacLeod, A. R. (1999) Down-regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16ink4A and p21WAF/ClP1 by distinct mechanisms. J. Biol. Chem. 274, 24,250–24,256.

    Article  PubMed  CAS  Google Scholar 

  101. Besterman, J., Younan, J., and Marquis, J. (2001) MG98 (DNMT-1-directed antisense oligodeoxynucleotide): toxicity studies in cynomolgus monkeys. Clin. Cancer Res. 7, 269 (abstract).

    Google Scholar 

  102. Davis, A. J., Moore, M. J., Gelmon, K. A, et al. (2000) Phase I and pharmacodynamic study of human DNA methyltransferase (MeTase) antisense oligodeoxynucleotide (ODN), MG98, administered as 21-day infusion q4 weekly. Clin. Cancer Res. 6, 257 (abstract).

    Google Scholar 

  103. Donehower, R., Stewart, D., Eisenhauer, E, et al. (2001) A phase I and pharmacokinetic (PK) study of MG98, a human DNA methyltransferase (Dnmt) mRNA inhibitor, given as a 2-hour twice weekly (BIW) infusion 3 out of every 4 wks. Clin. Cancer Res. 7, 133 (abstract).

    Google Scholar 

  104. Stauder, G M., Schlingensiepen, R., Goldbrunner, M, et al. (2002) Safety pharmacology and toxicity studies of the TGF-beta-2 antisense oligonucleotide AP 12009. Proc. Am. Soc. Clin. Oncol. 21, 1897 (abstract).

    Google Scholar 

  105. Hau, P., Bogdahn, U., Schulmeyer, F, et al. (2002) TGF-beta-2 antisense oligonucleotide AP12009 administered intratumorally to patients with malignant glioma in a clinical phase I/II dose escalation study: safety and preliminary efficacy data. Proc. Am. Soc. Clin. Oncol. 21, 109 (abstract).

    Google Scholar 

  106. Miyake, H., Nelson, C, Rennie, P. S., and Gleave, M. E. (2000) Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene, testosterone-repressed prostate message-2 in prostate cancer xenograft models. Cancer Res. 60, 2547–2554.

    PubMed  CAS  Google Scholar 

  107. Zellweger, T., Miyake, H., Cooper, S, et al. (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy) ethyl chemistry. J.Pharm. Exp. Ther. 298, 934–940.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Orr, R.M., Dorr, F.A. (2005). Clinical Studies of Antisense Oligonucleotides for Cancer Therapy. In: Phillips, M.I. (eds) Antisense Therapeutics. Methods in Molecular Medicine™, vol 106. Humana Press. https://doi.org/10.1385/1-59259-854-4:085

Download citation

  • DOI: https://doi.org/10.1385/1-59259-854-4:085

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-205-6

  • Online ISBN: 978-1-59259-854-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics