Skip to main content

Analysis of Superoxide Anion Production in Tissue

  • Protocol
Hypertension

Part of the book series: Methods In Molecular Medicine™ ((MIMM,volume 108))

Abstract

Endothelial production of oxygen free radicals, especially superoxide anion (O2), is an important mechanism of vascular dysfunction in hypertension. Overproduction of oxygen free radicals, mainly O2 - occurs in human hypertension and in a wide variety of animal models. Thus, analysis of O2generation represents a useful tool for identifying oxidative stress in hypertension. Among the methods used for O2 - detection, the chemiluminescent probe lucigenin has been widely shown to be a useful method for detecting and quantifying the O2 - formation. On the other hand, staining by the oxidative fluorescent probe dihydroethidine, which is freely permeable to cell membranes, is suitable to monitor in situ production of O2 - and to provide a reliable marker of its intracellular presence. Dihydroethidine is oxidized in the presence of O2 - to a fluorescent marker product, which is rapidly intercalated into DNA. Thus, nuclei are the primary fluorescent structures labeled. By simply incubating experimental samples in the presence of dihydroethidine followed by analysis of fluorescence, this method allows rapid and specific detection of intracellular oxidative stress due to superoxide anion generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Münzel, T., Afanas’ev, I. B., Kleschyov, A. L., and Harrison D. G. (2002) Detection of superoxide in vascular tissue. Arterioscler. Thromb. Vasc. Biol. 22, 1761–1768.

    Article  PubMed  Google Scholar 

  2. Lynch, R. E. and Fridovich I. (1978) Permeation of the erythrocyte stroma by superoxide radical. J. Biol. Chem. 253, 4697–4699.

    PubMed  CAS  Google Scholar 

  3. Xia, Y. and Zweier, J. L. (1997) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc. Natl. Acad. Sci. USA 94, 6954–6958.

    Article  PubMed  CAS  Google Scholar 

  4. Xia, Y., Tsai A. L., Berka, V., and ZweierJ, L. (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J. Biol. Chem. 273, 25804–25808.

    Article  PubMed  CAS  Google Scholar 

  5. Barbacanne, M. A., Souchard, J. P., Darblade, B., et al. (2000) Detection of superoxide anion released extracellularly using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques. Free Radic. Biol. Med. 29, 388–396.

    Article  PubMed  CAS  Google Scholar 

  6. Gardner, P. R., Rainieri, I., Epstein, L. B., and White, C. W. (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270, 13399–13405.

    Article  PubMed  CAS  Google Scholar 

  7. Bucana, C., Saiki, I., and Nayar, R. (1986) Uptake and accumulation of the vital dye hydroethidine in neoplastic cells. J. Histochem. Cytochem. 34, 1109–1115.

    PubMed  CAS  Google Scholar 

  8. Gallop, P. M., Paz, M. A., Henson, E., and Latt, S. A. (1984) Dynamic approaches to the delivery of reporter reagents into living cells. Bio. Techniques 2, 32–36.

    CAS  Google Scholar 

  9. Rothe G. and Valet G. (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescin. J. Leukoc. Biol. 47, 440–448.

    PubMed  CAS  Google Scholar 

  10. Zhao, H., Kalivendi, S., Zhang, H., et al. (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34, 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  11. Carter, W. O., Narayanan, P. K., and Robinson, J. P. (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leuk. Biol. 55, 253–258.

    CAS  Google Scholar 

  12. Bindokas, V. P., Jordan, J., Lee, C. C., and Miller, R. J. (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci. 16, 1324–1336.

    PubMed  CAS  Google Scholar 

  13. Miller, F. J., Jr., Gutterman, D. D., Rios, C. D., Heistad D. D., and Davidson, B. L. (1998) Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ. Res. 82, 1298–1305.

    PubMed  CAS  Google Scholar 

  14. Suzuki, H., Swei, A., Zweifach, B. W., and Schmid-Schonbein, G. W. (1995) In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydorethidine microfluorography. Hypertension 25, 1083–1089.

    PubMed  CAS  Google Scholar 

  15. Vanden Hoek, T. L., Li, C., Shao, Z., Schumacker, P. T., and Becker, L. B. (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J. Mol. Cell Cardiol. 29, 2571–2583.

    Article  Google Scholar 

  16. Prutz, W. A. (1984) Inhibition of DNA-ethidium bromide intercalation due to free radical attack upon DNA. Radiat. Environ. Biophys. 23, 1–18.

    Article  PubMed  CAS  Google Scholar 

  17. Swannell, R. P. J., Caplin, R., Nedwell, D. B., and Williamson, F. A. (1992) An investigation of hydroethidine as a flurescent vital stain for prokaryotes. FEMS Microbiol Lett. 101,173–182.

    Article  CAS  Google Scholar 

  18. Miko, M. and Chance, B. (1975) Ethidium bromide as an uncoupler of oxidative phosphorylation. FEBS Lett. 54, 347–352.

    Article  PubMed  CAS  Google Scholar 

  19. Biziukin, A. V. and Korkina, L. G. (1994) Use of the fluorescent indicator hydroethidine to study the oxidative metabolism of phagocytes. Klin. Lab. Diagn. 1, 41–42.

    PubMed  Google Scholar 

  20. Benov, L., Sztejnberg, L., and Fridovich, I. (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic. Biol. Med. 25, 826–831.

    Article  PubMed  CAS  Google Scholar 

  21. Edwards, B. S., Kuckuck, F., and Sklar L. A. (1999) Plug flow cytometry: An automated coupling device for rapid sequential flow cytometric sample analysis. Cytometry 37, 156–159.

    Article  PubMed  CAS  Google Scholar 

  22. Filatov, M. V., Varfolomeeva, E. Y., and Ivanovm, E. I. (1995) Flow cytofluorometric detection of inflammatory processes by measuring respiratory burst reaction of peripheral blood neutrophils. Biochem. Mol. Med. 55, 116–121.

    Article  PubMed  CAS  Google Scholar 

  23. Olive, P. L. (1989) Hydroethidine: a fluorescent redox probe for locating hypoxic cells in spheroids and murine tumours. Br. J. Cancer 60, 332–338.

    Article  PubMed  CAS  Google Scholar 

  24. Perticarari, S., Presani, G., Mangiarotti, M. A., and Banfi E. (1991) Simultaneous flow cytometric method to measure phagocytosis and oxidative products by neutrophils. Cytometry 12, 687–693.

    Article  PubMed  CAS  Google Scholar 

  25. Shi, T., Eaton, A. M., and Ring, D. B. (1991) Selection of hybrid hybridomas by flow cytometry using a new combination of fluorescent vital stains. J. Immunol. Methods 141, 165–175.

    Article  PubMed  CAS  Google Scholar 

  26. Saiki, I., Bucana, C. D., Tsao, J. Y., and Fidler, I. J. (1986) Quantitative fluorescent microassay for identification of antiproliferative compounds. J. Natl. Cancer Inst. 77,1235–1240.

    PubMed  CAS  Google Scholar 

  27. Becker, L. B., Vanden Hoek, T. L., Shao, Z. H., Li, C. Q., and Schumacker, P. T. (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am. J. Physiol. 277, H2240–H2246.

    PubMed  CAS  Google Scholar 

  28. Frisbee, J. C. and Stepp, D. W. (2001) Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am. J. Physiol. 281, H1304–H1311.

    CAS  Google Scholar 

  29. Zanetti, M., d’Uscio, L. V., Kovesdi, I., Katusic Z. S., and O’Brien, T. (2003) In vivo gene transfer of inducible nitric oxide synthase to carotid arteries from hy-percholesterolemic rabbits. Stroke 34, 1293–1298.

    Article  PubMed  CAS  Google Scholar 

  30. Brandes, R. P., Barton, M., Philippens, K. M., Schweitzer, G., and Mügge, A. (1997) Endothelial-derived superoxide anions in pig coronary arteries: evidence from lucigenin chemiluminescence and histochemical techniques. J. Physiol. 500, 331–342.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Zanetti, M., d’Uscio, L.V., Peterson, T.E., Katusic, Z.S., O’Brien, T. (2005). Analysis of Superoxide Anion Production in Tissue. In: Fennell, J.P., Baker, A.H. (eds) Hypertension. Methods In Molecular Medicine™, vol 108. Humana Press. https://doi.org/10.1385/1-59259-850-1:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-850-1:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-323-7

  • Online ISBN: 978-1-59259-850-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics