Skip to main content

In Vitro and In Vivo Interactions of Nonpathogenic Bacteria With Immunocompetent Cells

  • Protocol
Microbial Processes and Products

Part of the book series: Methods in Biotechnology ((MIBT,volume 18))

  • 1391 Accesses

Abstract

The intestinal microbiota is a postnatally acquired organ that is composed of a large diversity of bacterial genera and species and has an influence on the physiology of the host, both locally at the intestine and systemically. They perform important functions for the host and can, in turn, be modulated by environmental factors such as nutrition. Specific components of the intestinal microflora, including Lactobacilli and Bifidobacteria, have been associated with beneficial effects on the host, such as promotion of gut maturation and integrity, antagonisms against pathogens, and immune modulation. Beyond this, the microflora seems to play a significant role in the maintenance of intestinal immune homeostasis and prevention of inflammation. To date, the contribution of the intestinal epithelial cell in the first-line defense against pathogenic bacteria and microbial antigens has been recognized. However, the interactions of intestinal epithelial cells with commensal bacteria are less understood. This chapter intends to summarize some methods that can be used to understand the cellular and molecular mechanisms underlying bacterial modulation of the innate immune response of the host and their contribution to the homeostasis of the immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machie, R. I., Sghir, A., and Gaskins, H. R. (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035S–1045S.

    Google Scholar 

  2. Edwards, C. A., Rumney, C., Davies, M., et al. (2003) A human flora-associated rat model of the breast-fed infant gut. J. Pediatr. Gastroenterol. Nutr. 37, 168–177.

    Article  PubMed  Google Scholar 

  3. Martin, F., Savage, S. A. H., Parret, A. M., Gramet, G., Doré, J., and Edwards, C. (2000) Dynamics of colonisation of the colon in breast-fed infants. Reprod. Nutr. Dev. 40, 180–185.

    Google Scholar 

  4. Tannock, G. W. (1999) Analysis of the intestinal microflora: a renaissance. Antonie Leeuwenhoek 76, 265–278.

    Article  PubMed  CAS  Google Scholar 

  5. Vaughan, E. E., Schut, F., Heilig, H. G. H. J., Zoetendal, E. G., de Vos, W. M., and Akkermans, A. D. L. (2000) A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1, 1–12.

    PubMed  CAS  Google Scholar 

  6. Favier, C. E, Vaughan, E. E., de Vos, W. M., and Akkermans, A. D. L. (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68, 219–226.

    Article  PubMed  CAS  Google Scholar 

  7. Tannock, G. W., Munro, K., Harmsen, H. J. M., Welling, G. W., Smart, J., and Gopal, P. K. (2000) Analysis of the fecal microflora of human subjects consuming probiotic products containing Lactobacillus rhamnosus DR 20. Appl. Environ. Microbiol. 66, 2578–2588.

    Article  PubMed  CAS  Google Scholar 

  8. Zoetendal, E. G., Akkermans, A. D., and de Vos, W. M. (1998) Temperature gradient electrophoresis analysis of 16SrRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859.

    PubMed  CAS  Google Scholar 

  9. Schwiertz, A., Gruhl, B., Lobnitz, M., Michel, P., Radke, M., and Blaut, M. (2003) Development of the intestinal bacterial composition in hospitalized preterm infnats in comparison with breast-fed, full-term infants. Pediatr. Res. 54, 393–399.

    Article  PubMed  Google Scholar 

  10. Schiffrin, E. J. and Blum, S. (2002). Interactions between the microbiota and the intestinal mucosa. Eur. J. Clin. Nutr. 56(Suppl. 3), S60–S64.

    Article  PubMed  Google Scholar 

  11. Marteau, Ph., Pochart, Ph., Doré, J., Béra-Maillet, C., Bernalier, A., and Corthier, G. (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Micorbiol. 67,4939–4942.

    Article  CAS  Google Scholar 

  12. Stoodley, P., Sauer, K., Davies, D. G., and Costerton, J. W. (2002) Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209.

    Article  PubMed  CAS  Google Scholar 

  13. Rozee, K. R., Cooper, D., Lam, K., and Costerton, J. W. (1982) Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl. Environ. Microbiol. 43, 1451–1463.

    PubMed  CAS  Google Scholar 

  14. Matsuo, K., Ota, H., Akamatsu, T., Sugiyama, A., and Katsuyama, T. (1997) Histochemistry of the surface mucous gel layer of the human colon. Gut 40,782–789.

    Article  PubMed  CAS  Google Scholar 

  15. Deplancke, B. and Gaskins, H. R. (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 73, 1131S–1141S.

    PubMed  CAS  Google Scholar 

  16. Rojas, M., Ascencio, F., and Conway, P. L. (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl. Environ. Microbiol. 68, 2330–2336.

    Article  PubMed  CAS  Google Scholar 

  17. Kraehenbuhl, J. P. and Neutra, M. R. (1992) Molecular and cellular basis of immune protection of mucosal surfaces. Physiol. Rev. 72, 853–879.

    PubMed  CAS  Google Scholar 

  18. Berg, R. D. and Savage, D. C. (1975) Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous microorganisms. Infect. Immun. 11, 320–329.

    PubMed  CAS  Google Scholar 

  19. Collins, F. M. and Carter, P. B. (1978) Growth of salmonellae in orally infected germ-free mice. Infect. Immun. 21, 41–47.

    PubMed  CAS  Google Scholar 

  20. Ouwehand, A. C. and Conway, P. L. (1996) Purification and characterization of a component produced by Lactobacillus fermentum that inhibits the adhesion of K88 expressing Escherichia coli to porcine mucus. J. Appl. Bacteriol. 80, 311–318.

    PubMed  CAS  Google Scholar 

  21. Blomberg, L., Henriksson, A., and Conway, P. L. (1993) Inhibition of adhesion of Escherichia coli K88 to pigglet ileal mucus by Lactobacillus ssp. Appl. Environ. Microbiol. 59, 34–39.

    PubMed  CAS  Google Scholar 

  22. Resta-Lennert, S. and Barrett, K. E. (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Esherichia coli (EIEC). Gut 52, 988–997.

    Article  Google Scholar 

  23. Asahara, T., Nomoto, K., Shimizu, K., Watanuki, M., and Tanaka, R. (2001) Increased resistance of mice to Salmonella enterica serovar typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccha-rides. J. Appl. Microbiol. 91, 985–996.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, K. H., Jun, K. D., Kim, W. S., and Paik, H. D. (2001) Partial chatacterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenti-cus. Lett. Appl. Microbiol. 32, 146–151.

    Article  PubMed  CAS  Google Scholar 

  25. Boris, S., Jimenez-DÍaz, R., Caso, J. L., and Barbes, C. (2001) Partial characterization of a bacteriosin produced by Lactobacillus delbrueckii subsp. Lactis UO004, an intestinal isolate with probiotic potential. J. Appl. Microbiol. 91, 328–333.

    CAS  Google Scholar 

  26. Mack, D. R., Michail, S., Wei, S., McDougall, L., and Hollingsworth, M. A. (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276, G941–G950.

    PubMed  CAS  Google Scholar 

  27. Cebra, J. J. (1999) Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69, 1046S–1051S.

    PubMed  CAS  Google Scholar 

  28. Berg, R. D. and Savage, D. C. (1975) Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms. Infect. Immun. 11, 320–329.

    PubMed  CAS  Google Scholar 

  29. Kramer, D. R. and Cebra, J. J. (1995) Early appearance of natural mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J. Immunol. 154, 2051–2062.

    PubMed  CAS  Google Scholar 

  30. Garland, C. D., Lee, A., and Dickson, M. R. (1982) Segmented filamentous bacteria in the rodent small intestine: their colonization of growing animals and possible role in host resistance to Salmonella. Microb. Ecol. 8, 181–190.

    Article  Google Scholar 

  31. Zachar, Z. and Savage, D. C. (1979) Microbial interference and colonisation of the murine gastrointestinal tract by Listeria monocytogenes. Infect. Immun. 23, 168–174.

    PubMed  CAS  Google Scholar 

  32. Mostov, K. and Zegers, M. (2003) Cell biology: just mix and patch. Nature 422, 267–268.

    Article  PubMed  CAS  Google Scholar 

  33. Elewaut, D., DiDonato, J. A., Kim, J. M., Truong, F., Eckmann, L., and Kagnoff, M. F. (1999) NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J. Immunol. 163, 1457–1466.

    PubMed  CAS  Google Scholar 

  34. Hooper, L. V. and Gordon, J. I. (2001) Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  35. Xu, J., Bjursell, M. K., Himrod, J., et al. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076.

    Article  PubMed  CAS  Google Scholar 

  36. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M. A., Schiffrin, E. J., and Blum, S. (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leukocyte co-cultures. Gut 47, 79–87.

    Article  PubMed  CAS  Google Scholar 

  37. Klaasen, H. L. B. M., Van den Heijden, P. J., Stok, W., et al. (1993) Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of the mice. Infect. Immun. 61, 303–306.

    PubMed  CAS  Google Scholar 

  38. Ibnou-Zekri, N., Blum, S., Schiffrin, E. J., and von der Weid, T. (2003) Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect. Immun. 71, 428–436.

    Article  PubMed  CAS  Google Scholar 

  39. Crabbe, P. A., Bazin, H., Eyssen, H., and Heremans, J. F. (1968) The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int. Arch. Allergy Appl. Immunol. 34, 362–375.

    CAS  Google Scholar 

  40. Moreau, M. C., Ducluzeau, R., Guy-Grand, D., and Muller, M. C. (1978) Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect. Immun. 21, 532–539.

    PubMed  CAS  Google Scholar 

  41. Bos, N. A., Bun, J. C. A., Popma, S. H., et al. (1996) Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun. 64, 616–623.

    PubMed  CAS  Google Scholar 

  42. Bao, S., Beagley, K. W., Murray, A. M., et al. (1998) Intestinal IgA plasma cells of the B1 lineage are IL-5 dependent. Immunology. 94, 181–188.

    Article  PubMed  CAS  Google Scholar 

  43. Thurnheer, M. C., Zuercher, A. W., Cebra, J. J., and Bos, N. A. (2003) B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allo-type chimeric mice. J. Immunol. 170, 4564–4571.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Schiffrin, E.J., Ibnou-Zekri, N., Ovigne, J.M., von der Weid, T., Blum, S. (2005). In Vitro and In Vivo Interactions of Nonpathogenic Bacteria With Immunocompetent Cells. In: Barredo, JL. (eds) Microbial Processes and Products. Methods in Biotechnology, vol 18. Humana Press. https://doi.org/10.1385/1-59259-847-1:381

Download citation

  • DOI: https://doi.org/10.1385/1-59259-847-1:381

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-548-4

  • Online ISBN: 978-1-59259-847-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics