Skip to main content

Strategies for Measurement of Biotransformation Enzyme Gene Expression

  • Protocol
  • 990 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 291))

Abstract

The analysis of gene expression is an integral part of any research characterizing gene function. A wide variety of techniques have been developed for this purpose, each with their own advantages and limitations. This chapter seeks to provide an overview of some of the most recent as well as conventional methods to quantitate gene expression. These approaches include Northern blot analysis, ribonuclease protection assay (RPA), reverse transcription polymerase chain reaction, expressed sequence tag (EST) sequencing, differential display, cDNA arrays, and the serial analysis of gene expression (SAGE). Current applications of the information derived from gene expression studies require assays to be adaptable for the quantitative analysis of a large number of samples and end points within a short period coupled with cost effectiveness. A comparison of some of these features of each analytical approach as well as their advantages and disadvantages has also been provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  2. Reue, K. (1988) mRNA quantitation techniques: considerations for experimental design and application. J. Nutr. 128, 2038–2044.

    Google Scholar 

  3. Costanzi, C. and Gillespie, D. (1987) Fast blots: immobilization of DNA and RNA from cells. Methods Enzymol. 152, 582–587.

    Article  CAS  PubMed  Google Scholar 

  4. Azrolan, N. and Breslow, J. L. (1990) A solution hybridization/RNase protection assay with riboprobes to determine absolute levels of apo B, apo A-I and apo E mRNA in human hepatoma call lines. J. Lipid Res. 31, 1141–1146.

    CAS  PubMed  Google Scholar 

  5. Melton, D. A., Kreig, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and DNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.

    Article  CAS  PubMed  Google Scholar 

  6. Adams, M. D., Kelley, J. M., Gocayne, J. D., et al. (1991) Complementary DNA sequencing: expressed sequence tags and the human genome project. Science 252, 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  7. Patanjali, S. R., Parimoo, S., and Weissman, S. M. (1991) Construction of a uniform-abundance (normalized) cDNA library. Proc. Natl. Acad. Sci. USA 88, 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  8. Bonaldo, M. F., Lennon, G., and Soares, M. B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6, 791–806.

    Article  CAS  PubMed  Google Scholar 

  9. Ji, H., Liu, Y. E., Jia, T., et al. (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res. 57, 759–764.

    CAS  PubMed  Google Scholar 

  10. Hubank, M. and Schatz, D. G. (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22, 5640–5648.

    Article  CAS  PubMed  Google Scholar 

  11. Diatchenko, L., Lau, Y. F.-C, Campbell, A. P., et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  CAS  PubMed  Google Scholar 

  12. Rappolee, D. A., Mark, D., Banda, M. J., and Werb, Z. (1988) Wound macrophages express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 241, 708–712.

    Article  CAS  PubMed  Google Scholar 

  13. Wasserman, L., Dreilinger, A., Easter, D., and Wallace, A. (1999) A seminested RT-PCR assay for HER2/neu: initial validation of a new method for the detection of disseminated breast cancer cells. Mol. Diagn. 4, 21–28.

    Article  CAS  PubMed  Google Scholar 

  14. Israeli, R. S., Miller, W. H. Jr., Su, S. L., et al. (1994) Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Res. 54, 6306–6310.

    CAS  PubMed  Google Scholar 

  15. Funaki, N. O., Tanaka, J., Itami, A., et al. (1997) Detection of colorectal carcinoma cells in circulating peripheral blood by reverse transcription polymerase chain reaction targeting cytokeratin-20 mRNA. Life Sci. 60, 643–652.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, A. M., Doyle, M. V., and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 9717–9721.

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, T., Higgins, P. J., and Crawford, D. R. (2000) Control selection for RNA quantitation. BioTechniques 29, 332–337.

    CAS  PubMed  Google Scholar 

  18. http://www.appliedbiosystems.com

  19. Wittwer, C. T., Ririe, K. M., Andrew, R.V., David, D. A., Gundry, R. A., and Balis, U. J. (1997) The LightCycler: a microvolume multisample fluoimeter with rapid temperature control. BioTechniques 22, 176–181.

    CAS  PubMed  Google Scholar 

  20. Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

  21. Morrison T. B., Weiss, J. J., and Wittwer, C. T. (1998) Quantifiaction of low-copy transcripts by continuos SYBR Green I monitoring during amplification. BioTechniques 29, 954–962.

    Google Scholar 

  22. Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.

    CAS  PubMed  Google Scholar 

  23. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–970.

    Article  CAS  PubMed  Google Scholar 

  24. Welsh, J., Chada, K., Dalal, S. S., Cheng, R., and McClelland, M. (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 20, 4965–4970.

    Article  CAS  PubMed  Google Scholar 

  25. Kato, K. (1995) Description of the entire mRNA population by a 3′ end cDNA fragment generated by class IIS restriction enzymes. Nucleic Acids Res. 18, 3685–3690.

    Article  Google Scholar 

  26. Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Jeffrey, T. (1999) Expression profiling using cDNA microarrays. Nat. Genet. Suppl. 21, 10–14.

    Google Scholar 

  27. Marshall, A. and Hodgson, J. (1998) DNA chips: an array of possibilities. Nat. Biotechnol. 16, 27–31.

    Article  CAS  PubMed  Google Scholar 

  28. Tamayo, P., Slonim, D., Mesirov, J., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.

    Article  CAS  PubMed  Google Scholar 

  29. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868.

    Article  CAS  PubMed  Google Scholar 

  30. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M. (1999) Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Dor, A., Shamir, R., and Yakhini, Z. (1999) Clustering gene expression patterns. J. Comput. Biol. 6, 281–297.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, J. G., Olson, J. M., Tappscott, S. J., and Zhao, L. P. (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11, 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  33. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–488.

    Article  CAS  PubMed  Google Scholar 

  34. Carulli, J. P., Artinger, M., Swain, P. M., et al. (1998) High throughput analysis of differential gene expression. J. Cell. Biochem. Suppl. 30/31, 286–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Romkes, M., Buch, S.C. (2005). Strategies for Measurement of Biotransformation Enzyme Gene Expression. In: Keohavong, P., Grant, S.G. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology™, vol 291. Humana Press. https://doi.org/10.1385/1-59259-840-4:387

Download citation

  • DOI: https://doi.org/10.1385/1-59259-840-4:387

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-084-7

  • Online ISBN: 978-1-59259-840-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics