Skip to main content

Agrobacterium Persistence in Plant Tissues After Transformation

  • Protocol
Book cover Transgenic Plants: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 286))

Summary

Agrobacterium spp. are routinely used in plant transformation to introduce genes of interest in valuable economic species. However, several agrobacteria species are also plant pathogens with ability to survive in different environments including the inner part of the plants. To avoid the release of genetic modified bacteria a successful plant transformation protocol must include the total elimination of agrobacteria by the use of antibiotics. Because sometimes these antibiotics failed in removing the bacteria entirely, confirmation of agrobacteria absence after plant transformation and regeneration is required. Different methodologies can be used for this purpose: isolation techniques followed by identification are used if detection of viable and culturable bacteria is necessary and techniques based on the polymerase chain reaction can be used to detect agrobacteria independently of their physiological state. Here we present several protocols to detect Agrobacterium in tissues of transformed plants as well as methods to identify the strains isolated. These identification methods can help to elucidate if they are the engineered bacteria used in the transformation process or just part of the natural endophytic microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hooykaas, P. J. J. and Schilperoort, R. A. (1992) Agrobacterium and plant geneticengineering. Plant. Mol. Biol. 19, 15–38.

    Article  CAS  PubMed  Google Scholar 

  2. De Cleene, M. and De Ley, J. (1976) The host range of crown gall. Bot. Rev. 42, 389–466.

    Article  Google Scholar 

  3. Agrios, G. N. (1988) Bacterial galls, in Plant Pathology, 3rd Ed., Academic Press, San Diego, CA, pp. 558–565.

    Google Scholar 

  4. Moore, L. W. and Candfield, M. (1996) Biology of Agrobacterium and management of crown gall disease, in Principles and Practice of Managing Soilborne Plant Pathogens (Robert, H., ed.), APS Press, St. Paul, MN.

    Google Scholar 

  5. Southern, P. M. (1996) Bacteremia due to Agrobacterium tumefaciens (radiobacter). Report of infection in a pregnant woman and her stillborn fetus. Diag. Microbiol. Infect. Dis. 24, 43–45.

    Article  Google Scholar 

  6. Yu, W. L., Wang, D. Y., and Lin, C. W. (1997) Agrobacterium radiobacter bacteremia in a patient with chronic obstructive pulmonary disease. J. Formos. Med. Assoc. 96, 664–666.

    CAS  PubMed  Google Scholar 

  7. Tempe, J., Guyon, P., Tepfer, D., and Petit, A. (1979) The role of opines in the ecology of Ti plasmids of Agrobacterium, in Plasmids of Medical, Environmental, and Commercial Importance (Timmis, K. N. and Puhler, A., eds.), Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands, p. 353.

    Google Scholar 

  8. Riker, A. J. (1923) Some relations of the crown gall organism to its tissue. J. Agric. Res. 25, 119–132.

    Google Scholar 

  9. Hill, J. B. (1928) The migration of Bacterium tumefaciens in the tissue of tomato plants. Phytopathology 18, 553–564.

    Google Scholar 

  10. Suit, R. F. and Eardley, E. A. (1935) Secondary tumor formation on herbaceous hosts induced by Pseudomonas tumefaciens. Sci. Agric. 15, 345–357.

    Google Scholar 

  11. Stapp, C., Muller, H., Dame, F., and Pfeil, E. (1938) Derpflanzen Krebs und sein Erregen P. tumefaciens VIII. Mitt unterssuchungen uber die Moglicheit einer wirksamen Bekampfung an Kernobstgeholzen. Zentrabl. Bakteriol. II 99, 210–276.

    Google Scholar 

  12. Braun, A. C. (1941) Development of secondary tumors and tumor strands in the crown gall of sunflowers. Phytopathology 31, 135–149.

    Google Scholar 

  13. Lehoczky, J. (1968) Spread of Agrobacterium tumefaciens in the vessels of the grapevine, after natural infection. Phytopath. Z. 63, 239–246.

    Article  Google Scholar 

  14. Lehoczky, J. (1971) Further evidences concerning the systemic spreading of Agrobacterium tumefaciens in vascular system of grapevine. Vitis 10, 215–221.

    Google Scholar 

  15. El Khalifa, M. D., El Nur, E. E., Lippincott, B. B., and Lippincott, J. A. (1973) Crown gall on castor bean leaves. J. Exp. Bot. 24, 1117–1129.

    Article  Google Scholar 

  16. Miller, H. N. (1975) Leaf, stem, crown and root galls induced in chrysanthemum by Agrobacterium tumefaciens. Phytopathology 65, 805–811.

    Article  Google Scholar 

  17. Bouzar, H., Chilton, W. S., Nesme X., et al. (1995) A new Agrobacterium strain isolated from aerial tumours on Ficus benjamina L. Appl. Environ. Microbiol. 61, 65–73.

    CAS  PubMed  Google Scholar 

  18. Marti, R., Cubero, J., Daza, A., et al. (1999) Evidence of migration and endophytic presence of Agrobacterium tumefaciens in rose plants. Eur. J. Plant Pathol. 105, 39–50.

    Article  Google Scholar 

  19. Cubero, J. (1998) Detección y movimiento de Agrobacterium tumefaciens en distintas especies vegetales. PhD Thesis, Universidad de Valencia, Spain.

    Google Scholar 

  20. Cubero, J., Lastra, B., Salcedo, C. I., Piquer, J., and López, M. M. (2004) Detection of Agrobacterium translocation inside plants of different species. In preparation.

    Google Scholar 

  21. Burr T. J., Ophel, K., Katz, B. H., and Kerr, A. (1989) Effect of hot water treatment on systemic Agrobacterium tumefaciens biovar 3 in dormant grape cuttings. Plant Dis. 73, 242–245.

    Article  Google Scholar 

  22. Weller, S. A., Simpkins, S. A., Stead, D. E., Kurdziel, A., Hird, H., and Weekes, R. J. (2002) Identification of Agrobacterium spp. present within Brassica napus seed by Taqman PCR-implications for GM screening procedures. Arch. Microbiol. 178, 338–343.

    Article  CAS  PubMed  Google Scholar 

  23. Mogilner, N., Zutra D., Gafny, R., and Bar-Joseph, M. (1993) The persistence of engineered Agrobacterium tumefaciens in agroinfected plants. Mol. Plant Microbe Interact. 5, 673–675.

    Article  Google Scholar 

  24. Matzk, A., Sinclair, M., and Sciemann, J. (1996) Localization of persisting agrobacteria in transgenic tobacco plants. Mol. Plant Microbe Interact. 9, 373–381.

    Article  CAS  Google Scholar 

  25. Tang, H. and Krczal, R. G. (2000) An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effect on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 19, 881–887.

    Article  CAS  Google Scholar 

  26. Hammerschlag, F. A., Zimmerman, R. H., Yadava, U. L., Hunsucher, S., and Gercheva, P. (1995) An evaluation of antibiotics for elimination of Agrobacterium tumefaciens from apple leaf explants in vitro and for effect of regeneration. Hort. Sci. 30, 876.

    Google Scholar 

  27. Shackelford, N. J. and Chlan, C. A. (1996) Identification of antibiotics that are effective in eliminating Agrobacterium tumefaciens. Plant. Mol. Biol. Rep. 14, 50–57.

    Article  CAS  Google Scholar 

  28. Manahan, S. H. and Steck, T. R. (1997) The viable but nonculturable state in Agrobacterium tumefaciens and Rhizobium meliloti. FEMS Microbiol. Ecol. 22, 29–37.

    Article  CAS  Google Scholar 

  29. Whitesides, M. D. and Oliver, J. D. (1997) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl. Environ. Microbiol. 63, 1002–1005.

    CAS  PubMed  Google Scholar 

  30. McDougald, D., Rice, S. A., Weichart, D., and Kjelleberg, S. (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25, 1–9.

    Article  CAS  Google Scholar 

  31. Alexander, E., Pham, D., and Steck, T. R. (1999) The viable-but-nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl. Environ. Microbiol. 65, 3754–3756.

    CAS  PubMed  Google Scholar 

  32. Stewart, C. N., Richards, H. A., and Halfhill, M. D. (2000) Transgenic plants and biosafety: science, misconceptions and public perceptions. BioTechniques 29, 832–843.

    CAS  PubMed  Google Scholar 

  33. Moore, L. W., Bouzar, H., and Burr, T. (2001) Agrobacterium, in Laboratory Guide for Identification of Plant Pathogenic Bacteria. (Schaad, N. W., Jones, J. B., and Chun, W., eds.), APS Press, St. Paul, MN, pp. 17–34.

    Google Scholar 

  34. Schroth, M. N., Thompson, J. P., and Hildebrand, D. C. (1965) Isolation of A. tumefaciens-A. radiobacter group from the soil. Phytopathology 55, 645–647.

    Google Scholar 

  35. Brisbane, P. G. and Kerr, A. (1983) Selective media for three biovars of Agrobacterium. J. Appl. Bacteriol. 54, 425–431.

    Google Scholar 

  36. New, P. B. and Kerr, A. (1971) A selective medium for Agrobacterium radiobacter biotype 2. J. Appl. Bacteriol. 34, 233–236.

    CAS  PubMed  Google Scholar 

  37. Roy, M. A. and Sasser, M. (1983). A medium selective for Agrobacterium tumefaciens biotype 3 (abstr.). Phytopathology 73, 810.

    Google Scholar 

  38. Bernaerts, M. J. and De Ley, J. (1963) A biochemical test for crown gall bacteria. Nature 197, 406–407.

    Article  CAS  Google Scholar 

  39. Simmons, J. S. (1926) A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. J. Infect. Dis. 39, 209–214.

    Google Scholar 

  40. Hendrickson, A. A., Baldwin, I. L., and Riker, J. (1934) Studies on certain physiological characters of Phytomonas tumefaciens, Phytomonas rhizogenes, and Bacillus radiobacter. II. J. Bacteriol. 28, 597–618.

    CAS  PubMed  Google Scholar 

  41. Kerr, A. and Panagopoulos, C. G. (1997) Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Phytopath. Z. 90, 172–179.

    Article  Google Scholar 

  42. Ayers, S. H., Rupp, P., and Johnson, W. T. (1919) A study of the alkali-forming bacteria in milk. United States Department of Agriculture Bulletin 782.

    Google Scholar 

  43. Nesme, X., Leclerc, M. C., and Bardin, R. (1989) PCR detection of an original endosymbiont: the Ti plasmid of Agrobacterium tumefaciens, in Endocytobiology IV. (Nardon, P., Gianinazzi-Peason, V., Greines, A. M., Margulis, L. and Smith, D. C., eds.). Institute National de Recherche Agronomique, Paris, pp. 47–50.

    Google Scholar 

  44. Sawada, H., Ieki, H., and Matsuda, I. (1995) PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl. Environ. Microbiol. 61, 828–831.

    CAS  PubMed  Google Scholar 

  45. Haas, J. H., Moore, L. W., Ream, W., and Manulis, S. (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl. Environ. Microbiol. 61, 2879–2884.

    CAS  PubMed  Google Scholar 

  46. Cubero, J. and López, M. M. (2001) An efficient microtiter system to determine Agrobacterium biovar. Eur. J. Plant Pathol. 107, 757–760.

    Article  Google Scholar 

  47. Cubero, J., Martínez, M. C., Llop, P., and López, M. M. (1999) A simple and efficient PCR method for the detection of Agrobacterium tumefaciens in plant tumors. J. Appl. Microbiol. 86, 591–602.

    Article  CAS  PubMed  Google Scholar 

  48. Taggart, E. M., Byngton, C. L., Hillyard, D. R., Robinson, J. E., and Carrol, K. C. (1999) Enhancement of the amplicor enterovisus PCR test with a coprecipitant. J. Clin. Microbiol. 36, 3408–3409.

    Google Scholar 

  49. Cubero, J., Graham, J. H., and Gottwald, T. R. (2001) Quantitative PCR method for diagnosis of citrus bacterial canker. Appl. Environ. Microbiol. 67, 2849–2852.

    Article  CAS  PubMed  Google Scholar 

  50. Wilson, I. G. (1997) Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63, 3741–3751.

    CAS  PubMed  Google Scholar 

  51. Cubero J., van der Wolf, J., van Beckhoven, J., and Lopez, M. M. (2002) An internal control for the diagnosis of crown gall by PCR. J. Microbiol. Methods 51, 387–392.

    Article  CAS  PubMed  Google Scholar 

  52. Sachadyn, P. and Kur, J. (1998) The construction and use of an internal control. Mol. Cell. Probes 12, 259–262.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Cubero, J., López, M.M. (2005). Agrobacterium Persistence in Plant Tissues After Transformation. In: Peña, L. (eds) Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press. https://doi.org/10.1385/1-59259-827-7:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-827-7:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-263-6

  • Online ISBN: 978-1-59259-827-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics