Skip to main content

Chloroplast Genetic Engineering to Improve Agronomic Traits

  • Protocol

Part of the Methods in Molecular Biology™ book series (MIMB,volume 286)

Summary

Major crop losses occur annually as a result of biotic and abiotic stresses. The ability to hyperexpress foreign proteins, single-step multigene engineering, lack of positive effect and gene silencing, vector sequences and pleiotropic effects have resulted in several hundred-fold more tolerance to the environmental stresses via chloroplast genetic engineering than nuclear genetic engineering. Maternal inheritance of chloroplast expressed transgenes renders the technology environmentally safe and promotes public acceptance. This review provides protocols for engineering agronomic traits like insect, herbicide and disease resistance; salt and drought tolerance; and phytoremediation via chloroplast genome.

Key Words

  • Disease resistance
  • drought tolerance
  • GM crops
  • herbicide resistance
  • maternal inheritance
  • pest resistance/management
  • phytoremediation
  • plastid transformation
  • transgene containment

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-827-7:111
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-827-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Daniell, H. (2002) Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20, 581–586.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Daniell, H. and Parkinson, C. L. (2003) Jumping genes and containment. Nat Biotechnol. 21, 374–375.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Daniell, H. and Dhingra, A. (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr. Opin. Biotechnol. 13, 136–141.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Daniell, H., Khan, M. S, and Alison, L. (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7, 84–91.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Palmer, J. D. (1985) Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19, 325–354.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Lilly, J. W., Havey, M. J., Jackson, S. A., and Jiang, J. M. (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13, 245–254.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Daniell, H., Vivekananda, J., Nielsen, B. L., Ye, G. N., Tewari, K. K., and Sanford, J. C. (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. USA 87, 88–92.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S. B. (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Guda, C., Lee, S. B., and Daniell, H. (2000) Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep. 19, 257–262.

    CAS  CrossRef  Google Scholar 

  10. Kota, M., Daniell, H., Varma, S., Garczynski, S. F., Gould, F., and William, M. J. (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 96, 1840–1845.

    CAS  PubMed  CrossRef  Google Scholar 

  11. DeCosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H. (2001) Overexpression of the Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74.

    PubMed  CrossRef  Google Scholar 

  12. Ruiz, O. N., Hussein, H., Terry, N., and Daniell, H. (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132, 1344–1352.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Bizily, S. P., Rugh, C.L., and Meagher, R. B. (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18, 213–217.

    CAS  PubMed  CrossRef  Google Scholar 

  14. DeGray, G., Kanniah, R., Franzine, S., John, S., and Daniell, H. (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127, 852–862.

    CrossRef  Google Scholar 

  15. Iamtham, S. and Day, A. (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Lee, S. B., Kwon, H. B., Kwon, S. J., et al. (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol. Breed. 11, 1–13.

    CAS  CrossRef  Google Scholar 

  17. McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P. (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13, 362–365.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Staub, J. M., Garcia, B., Graves, J., etal. (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18, 333–338.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Daniell, H., Lee, S. B., Panchal, T., and Wiebe, P. O. (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311, 1001–1009.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Ruiz, G. (2002) Optimization of codon composition and regulatory elements for expression of the human IGF-1 in transgenic chloroplasts. MS thesis, University of Central Florida, Orlando, FL.

    Google Scholar 

  21. Torres, M. (2002) Expression of interferon α5 in transgenic chloroplasts of tobacco. MS thesis, University of Central Florida, Orlando, FL.

    Google Scholar 

  22. Falconer, R. (2002) Expression of interferon α2b in transgenic chloroplasts of a low-nicotine tobacco. MS thesis, University of Central Florida, Orlando, FL.

    Google Scholar 

  23. Fernandez-San Millan, A., Mingo-Castel, A., and Daniell, H. (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. J. 1, 71–79.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Leelavathi S. and Reddy V. S. (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed. 11, 49–58.

    CAS  CrossRef  Google Scholar 

  25. Daniell, H., Dhingra, A., and San-Milan, A. F. (2001) 12th International Congress on Photosynthesis, Vol. S40-04 1–6, CSIRO, Brisbane, Australia.

    Google Scholar 

  26. Daniell, H., Watson, J., Koya, V., and Leppla, S. (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine, in press.

    Google Scholar 

  27. Singleton, M. L. (2003) Expression of CaF1 and LcrV as a fusion protein for a vaccine against Yersinia pestis via chloroplast genetic engineering. MS thesis, University of Central Florida, Orlando, FL.

    Google Scholar 

  28. Daniell, H. and McFadden, B. A. (1987) Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. Proc. Natl. Acad. Sci. USA 84, 6349–6353.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Daniell, H., Krishnan, M., and McFadden, B. F. (1991) Transient expression of beta-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Rep. 9, 615–619.

    CAS  CrossRef  Google Scholar 

  30. Goldschmidt Clermont, M. (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast—a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19, 4083–4089.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Svab, Z. and Maliga, P. (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241, 49–56.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Bateman, J. M. and Purton, S. (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol. Gen. Genet. 263, 404–410.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Huang, F. C., Klaus, S. M. J., Herz, S., Zou, Z., Koop, H. U., and Golds, T. J. (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol. Genet. Genom. 268, 19–27.

    CAS  CrossRef  Google Scholar 

  35. Hibberd, J. M., Linley, P. J., Khan, M. S., and Gray, J. C. (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J. 16, 627–632.

    CAS  CrossRef  Google Scholar 

  36. Sidorov, V. A., Kasten, D., Pang, S. Z., Hajdukiewicz, P. T. J., Staub, J. M., and Nehra, N. S. (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19, 209–216.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Khan, M. S. and Maliga, P. (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17, 910–915.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Daniell, H., Muthukumar, B., and Lee, S. B. (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39, 109–116.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Devine, A. L. and Daniell, H. (2004) Plastids, in Annual Plant Reviews, Vol. 13, (Moller, E., ed.) Blackwell, Oxford, UK, Chapter 10, pp. 283–323.

    Google Scholar 

  40. Dhingra, A. and Daniell, H. (2004) Chloroplast genetic engineering via organogenesis or somatic embryogenesis, in Arabidopsis Protocols, 2nd Ed., in press.

    Google Scholar 

  41. Molina, A., Hervas-Stubbs, S., Daniell, H., Mingo-Castel, A. M., and Veramendi, J., (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol. J. 2, 141–153.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Dhingra, A. (2000) Analysis of components involved in regulation of plastid gene expression, plastome organization and its manipulation with emphasis on rice (Oryza sativa L.). PhD thesis, University of Delhi South Campus, New Dehli, India.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Daniell, H., Ruiz, O.N., Dhingra, A. (2005). Chloroplast Genetic Engineering to Improve Agronomic Traits. In: Peña, L. (eds) Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press. https://doi.org/10.1385/1-59259-827-7:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-827-7:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-263-6

  • Online ISBN: 978-1-59259-827-4

  • eBook Packages: Springer Protocols