Stable Transformation of Plant Cells by Particle Bombardment/Biolistics

  • Julie R. Kikkert
  • José R. Vidal
  • Bruce I. Reisch
Part of the Methods in Molecular Biology™ book series (MIMB, volume 286)


Particle bombardment, or biolistics, is a commonly used method for genetic transformation of plants and other organisms. Millions of DNA-coated metal particles are shot at target cells or tissues using a biolistic device or gene gun. The DNA elutes off the particles that lodge inside the cells, and a portion may be stably incorporated in the host chromosomes. A protocol for the generation of transgenic grapevines via biolistic transformation of embryogenic cell suspension cultures is detailed in this chapter. In a typical experiment, transient gene expression averaged nearly 8000 “hits” per bombarded plate. Five months after bombardment, there were nearly five putative transgenic embryos per bombarded plate. About half of the embryos were regenerated into confirmed transgenic plants. The basic bombardment procedures described are applicable to a wide range of plant genotypes, especially those for which embryogenic cell cultures are available. All users of particle bombardment technology will find numerous useful tips to maximize the success of transformation.

Key Words

Ballistics biolistic biotechnology embryogenic cells gene gun genetic engineering grapevine microcarrier microparticle bombardment microprojectile bombardment particle acceleration particle bombardment particle gun plant transformation Vitis 


  1. 1.
    Sanford, J. C., Klein, T. M, Wolf, E. D., and Allen, N. (1987). Delivery of substances into cells and tissues using a particle bombardment process. Particulate Sci. Technol. 5, 27–37.CrossRefGoogle Scholar
  2. 2.
    Sanford, J. C. (2000) The development of the biolistic process. In Vitro Cell. Dev. Biol. Plant 36, 303–308.CrossRefGoogle Scholar
  3. 3.
    Kikkert, J. R. (1993) The Biolistic® PDS-1000/He device. Plant Cell Tiss. Org. Cult. 33, 221–226.CrossRefGoogle Scholar
  4. 4.
    Southgate, E. M., Davey, M. R., Power, J. B., and Marchant, R. (1995). Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol. Adv. 13, 631–651.PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor, N. J. and Fauquet, C. M. (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol. 21, 963–977.PubMedCrossRefGoogle Scholar
  6. 6.
    McCabe, D. and Christou, P. (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology). Plant Cell Tiss. Org. Cult. 33, 227–236.CrossRefGoogle Scholar
  7. 7.
    Sanford, J. C., Smith, F. D., and Russell, J. A. (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217, 483–509.PubMedCrossRefGoogle Scholar
  8. 8.
    Sanford, J. C., DeVit, M. J., Russell, J. A., et al. (1991) An improved, helium-driven biolistic device. Technique 3, 3–16.Google Scholar
  9. 9.
    Perl, A., Lotan, O., Abu-Abied, M., and Holland, D. (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol. 14, 624–628.PubMedCrossRefGoogle Scholar
  10. 10.
    Francois, I. E. J. A., Broekaert, W. F., and Cammue, B. P. A. (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci. 163, 281–295.CrossRefGoogle Scholar
  11. 11.
    Fu, X., Duc, L. T., Fontana, S., et al. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgen. Res. 9, 11–19.CrossRefGoogle Scholar
  12. 12.
    Srivastava, V. and Ow, D. (2001) Biolistic mediated site-specific integration in rice. Mol. Breed. 8, 345–350.CrossRefGoogle Scholar
  13. 13.
    Vidal, J. R., Kikkert, J. R., Wallace, P. G., and Reisch, B. I. (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep. 22, 252–260.PubMedCrossRefGoogle Scholar
  14. 14.
    Mauro, M. C., Toutain, S., Walter, B., et al. (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112, 97–106.CrossRefGoogle Scholar
  15. 15.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497.CrossRefGoogle Scholar
  16. 16.
    Lloyd, G. and McCown, B. (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int. Plant Prop. Soc. Proc. 30, 421–427.Google Scholar
  17. 17.
    Russell, J. A., Roy, M. K., and Sanford, J. C. (1992) Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell. Dev. Biol. 28P, 97–105.Google Scholar
  18. 18.
    Vain, P., McMullen, M. D., and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12, 84–88.CrossRefGoogle Scholar
  19. 19.
    Finer, J. J. and McMullen, M. D. (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P, 17–182.Google Scholar
  20. 20.
    Russell, J. A., Roy, M. K., and Sanford, J. C. (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98, 1050–1056.PubMedCrossRefGoogle Scholar
  21. 21.
    Sawant, S. S., Singh, P. K., and Tuli, R. (2000) Pretreatment of microprojectiles to improve the delivery of DNA in plant transformation. BioTechniques 29, 246–248PubMedGoogle Scholar
  22. 22.
    Birch, R. G. and Franks, T. (1991) Development and optimisation of microprojectile systems for plant genetic transformation. Aust. J. Plant Physiol. 18, 453–469.CrossRefGoogle Scholar
  23. 23.
    Smith, F. D., Harpending, P. R., and Sanford, J. C. (1992) Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells. J. Gen. Microbiol. 138, 239–248.PubMedGoogle Scholar
  24. 24.
    Martinelli, L. and Mandolino, G. (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor. Appl. Genet. 88, 621–628.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Julie R. Kikkert
    • 1
  • José R. Vidal
    • 1
  • Bruce I. Reisch
    • 1
  1. 1.Department of Horticultural Sciences, New York State Agricultural Experiment StationCornell UniversityGeneva

Personalised recommendations