Skip to main content

High-Resolution Imaging of Osteoarthritis Using Microcomputed Tomography

  • Protocol
Book cover Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 101))

Abstract

Three-dimensional imaging of osteoarthritis is so far limited to late stages of the disease. In this chapter we introduce microcomputed tomography (µCT) as a new imaging tool that offers exciting features for diagnosis of earlier disease stages and for disease monitoring. µCT provides spatial resolution better than 100 µm, but the size of the objects that can be scanned is restricted to several centimeters. The strength of X-ray-based techniques like µCT is the excellent visualization of bone. Therefore, the main application of µCT in osteoarthritis (OA) will be the analysis of bone in small-animal models or of human bone biopsies.

As an example, we will exemplarily describe the application of µCT for the examination of knee joints of male STR1N mice. This inbred strain spontaneously develops OA that carries many characteristics of the human disease. With µCT it is possible to monitor the prominent bony alterations such as osteophyte formation, trabecular remodeling, subchondral bone plate thickening, and subchondral sclerosis. We discuss sample preparation, scanning procedures, data processing, and analysis as well as implications and restrictions for in vivo and in vitro applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resnick, D. and Niwayama, G. (1988) Diagnosis of Bone and Joint Disorders. WB Saunders, Philadelphia.

    Google Scholar 

  2. Eckstein, F., Reiser, M., Englmeier, K.-H., and Putz, R. (2001) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging—from image to data, from data to theory. Anat. Embryol. 203, 147–173.

    Article  PubMed  CAS  Google Scholar 

  3. Burstein, D., Bashir, A., and Gray, M. L. (2000) MRI techniques in early stages of cartilage disease. Invest. Radiol. 35, 622–638.

    Article  PubMed  CAS  Google Scholar 

  4. Layton, M., Goldstein, S., Goulet, R., Feldkamp, L., Kubinsky, L., and Bole, G. (1988) Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum. 31, 1400–1405.

    Article  PubMed  CAS  Google Scholar 

  5. Shimizu, M., Tsuji, H., Matsui, H., and Sano, A. (1993) Morphometric analysis of subchondral bone of the tibial condyle in osteoarthrosis. Clin. Orthop. 293, 229–239.

    PubMed  Google Scholar 

  6. Benske, J., Schunke, M., and Tillmann, B. (1988) Subchondral bone formation in arthrosis. Polychrome labeling studies in mice. Acta Orthop. Scand. 59, 536–541.

    Article  PubMed  CAS  Google Scholar 

  7. Engelke, K., Wachsmuth, L., Taubenreuther, U., et al. (2001) High resolution in vitro µCT of osteoarthritis in a mouse model. High Resolution Imaging in Small Animals Meeting, Maryland, USA.

    Google Scholar 

  8. Engelke, K., Karolczak, M., Lutz, A., Seibert, U., Schaller, S., and Kalender, W. A. (1999) High spatial resolution 3D x-ray cone-beam microtomography. RSNA 85th Scientific Assembly and Annual Meeting, Radiology, Chicago, Il, p. 194.

    Google Scholar 

  9. Karolczak, M., Schaller, S., Engelke, K., et al. (2001) Implementation of a cone-beam reconstruction algorithm for the single-circle source orbit with embedded misalignment correction using homogeneous coordinates. Med. Phys. 28, 2050–2069.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, Y., Zhao, J., White, D., and Genant, H. (2000) Micro CT and micro MR imaging of 3D architecture of animal skeleton. J. Musculoskel. Neuronal Interaction 1, 45–51.

    CAS  Google Scholar 

  11. Dedrik D, Goldstein S, Brandt K, O’Connor B, Goulet R, Albrecht M. (1993) A longitudinal study of subchondral bone plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 month. Arthritis Rheum. 36, 1460–1467.

    Article  Google Scholar 

  12. Buckland-Wright J. (1994) Quantitative radiography of osteoarthritis. Ann. Rheum. Dis. 53, 268–275.

    Article  PubMed  CAS  Google Scholar 

  13. Buckland-Wright, J., Lynch, J., and Macfarlane, D. (1996) Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann. Rheum. Dis. 55, 749–755.

    Article  PubMed  CAS  Google Scholar 

  14. Imhoff, H., Sulzbacher, I., Grampp, S., Czerny, C., Youssefzadeh, S., and Kainberger, F. (2000) Subchondral bone and cartilage disease. A rediscovered functional unit. Invest. Radiol. 35, 581–588.

    Article  Google Scholar 

  15. Li, B. and Aspden, R. (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann. Rheum. Dis. 56, 247–254.

    Article  PubMed  CAS  Google Scholar 

  16. Li, B., Marshall, D., Roe, M., and Aspden, R. (1999) The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J. Anat. 195, 101–110.

    Article  PubMed  Google Scholar 

  17. Radin, E. and Rose, R. (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. 213, 34–40.

    PubMed  Google Scholar 

  18. Yamada, K., Healey, R., Amiel, D., Lotz, M., and Couttts, R. (2002) Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthritis Cartilage 10, 360–369.

    Article  PubMed  CAS  Google Scholar 

  19. Yamashita, T., Nabeshima, Y., and Noda, M. (2000) High-resolution micro-computed tomography analyses of the abnormal trabecular bone structures in klotho gene mutant mice. J. Endocrinol. 164, 239–245.

    Article  PubMed  CAS  Google Scholar 

  20. Taubenreuther, U., Engelke, K., Karolczak, M., Lutz, A., Noo, F., and Kalender, W. A. (2001) Practical misalignment correction in circular and spiral cone beam tomography. RSNA 87th Scientific Assembly and Annual Meeting, Radiology, Chicago, IL, p. 543.

    Google Scholar 

  21. Barrett, H. B. and Swindell, W. (1981) Radiological Imaging. Academic, New York.

    Google Scholar 

  22. Beutel, J., Kundel, H. L., and Van Metter, R L. (2000) Volume 1. Physics and Psychophysics, vol. 1. Handbook of Medical Imaging. SPIE, Bellingham, WA.

    Google Scholar 

  23. Graeff, W. and Engelke, K. (1991) Microradiography and microtomography, in: Handbook on Synchrotron Radiation. (Ebashi, E., Koch, M., and Rubenstein, E., eds.) North-Holland, Amsterdam, pp. 361–405.

    Google Scholar 

  24. Kalender, W. A. (2000) Computed Tomography. Wiley, New York.

    Google Scholar 

  25. Metz, C. E. and Doi, K. (1979) Transfer function analysis of radiographic imaging systems. Phys. Med. Biol. 24, 1079–1106.

    Article  PubMed  CAS  Google Scholar 

  26. Rossmann, K., Haus, A. G., and Doi, K. (1972) Validity of the MTF of magnification radiography. Phys. Med. Biol. 17, 648–655.

    Article  PubMed  CAS  Google Scholar 

  27. Nyquist, H. (1928) Certain topics in telegraph transmission theory. Trans. Am. Inst. Elec. Eng. 47, 617–644.

    Article  Google Scholar 

  28. Shannon, C. (1948) A mathematical theory of communication. Part 2. Bell Sys. Tech. J. 27, 623–656.

    Google Scholar 

  29. Shannon, C. (1948) A mathematical theory of communication. Part 1. Bell Sys. Tech. J. 27, 379–423.

    Google Scholar 

  30. Bonse, U. and Busch, F. (1996) X-ray computed microtomography (µCT) using synchrotron radiation (SR). Prog. Biophys. Mol. Biol. 65, 133–169.

    Article  PubMed  CAS  Google Scholar 

  31. Engelke, K., Karolczak, M., Fuchs, H., de Angelis, M. H., Ulzheimer, S., and Kalender, W. A. (2003) An in-vivo Cone Beam Micro-CT Scanner for Whole Body Investigation of Mice. 25th Annual Meeting of the American Society for Bone and Mineral Research, Minneapolis, MI. JBMR 18(suppl. 1), 32

    Google Scholar 

  32. Kinney, J. H., Lane, N. E., and Haupt, D. L. (1995) In vivo, three-dimensional microscopy of trabecular bone. J. Bone Miner. Res. 10, 264–270.

    Article  PubMed  CAS  Google Scholar 

  33. Kachelrieß M, Kalender WA. (1999) Dose reduction by generalized 3D adaptive filtering for conventional and spiral single-, multirow and cone-beam CT. RSNA 85th Scientific Assembly and Annual Meeting, Radiology, Chicago, IL, pp. 283–284.

    Google Scholar 

  34. Kalender, W. A., Wolf, H., Suess, C., Gies, M., Greess, H., and Bautz, W. A. (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur. Radiol. 9, 323–328.

    Article  PubMed  CAS  Google Scholar 

  35. Hahn, M., Vogel, M., Pompesius-Kempa, M., and Delling, G. (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13, 327–330.

    Article  PubMed  CAS  Google Scholar 

  36. Laib, A., Beuf, O., Issever, A., Newitt, D. C., and Majumdar, S. (2001) Direct measures of trabecular bone architecture from MR images. Adv. Exp. Med. Biol. 496, 37–46.

    PubMed  CAS  Google Scholar 

  37. Laib, A., Newitt, D. C., Lu, Y., and Majumdar, S. (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporosis Int. 13, 130–136.

    Article  CAS  Google Scholar 

  38. Majumdar, S., Link, T. M., Augat, P., et al. (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Osteoporosis Int. 10, 231–239.

    Article  CAS  Google Scholar 

  39. Parfitt, A. M., Drezner, M. K., Glorieux, F. H., et al. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J. Bone Miner. Res. 2, 595–610.

    Article  PubMed  CAS  Google Scholar 

  40. Laib, A., Hildebrand, T., Hauselmann, H. J., and Rügsegger, P. (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21, 541–546.

    Article  PubMed  CAS  Google Scholar 

  41. Hildebrand, T. and Rügsegger, P. (1997) A new method for the model independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75.

    Article  Google Scholar 

  42. Hildebrand, T. and Rügsegger, P. (1997) Quantification of bone microarchitecture with the structure model index. CMBBE 1, 15–23.

    PubMed  Google Scholar 

  43. Kang, Y., Engelke, K., and Kalender, W. A new accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Med Ima. 22, 586–598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Wachsmuth, L., Engelke, K. (2004). High-Resolution Imaging of Osteoarthritis Using Microcomputed Tomography. In: De Ceuninck, F., Sabatini, M., Pastoureau, P. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine, vol 101. Humana Press. https://doi.org/10.1385/1-59259-821-8:231

Download citation

  • DOI: https://doi.org/10.1385/1-59259-821-8:231

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-505-7

  • Online ISBN: 978-1-59259-821-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics