Skip to main content

Molecular and Biochemical Assays of Cartilage Components

  • Protocol
Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 101))

Abstract

The procedure described below is useful for extracting proteins, nucleic acids, and glycosaminoglycans from 5–40 mg of cartilage or tissue-engineered cartilage samples. This extraction method will generate samples compatible with Western blot, RNase protection, dimethyl methylene blue (DMB) assay for glycosaminoglycan, Hoechst DNA assay, and hydroxyproline assay. Most soluble matrix molecules can be extracted from pulverized samples using 4 M guanidine HCl, during a 30-min period of vortex agitation at 4°C. Shorter agitation times can give inadequate solubilization. The guanidine HCl-insoluble pellet must be re-extracted with guanidine thiocyanate buffer, to solubilize RNA additionally. The final insoluble pellet can be rinsed with ethanol and digested with papain, to quantify collagen content as well as other insoluble or crosslinked material. Samples between 1 and 5 mg may be directly digested with a small volume of papain buffer for DMB, hydroxyproline, and Hoechst DNA assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farndale, R. W., Buttle, D. J., and Barrett, A. J. (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochem. Biophys. Acta 883, 173–177.

    PubMed  CAS  Google Scholar 

  2. Kim Y._ J., Sah, R. L., Doong, J.-Y. H., and Grodzinsky, A. J. (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168–176.

    Article  PubMed  CAS  Google Scholar 

  3. Farndale, R. W., Sayers, C. A., and Barrett, A. J. (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9, 247–248.

    Article  PubMed  CAS  Google Scholar 

  4. Chandrasekhar, S., Esterman, M. A., and Hoffman, H. A. (1987) Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal. Biochem. 161, 103–108.

    Article  PubMed  CAS  Google Scholar 

  5. Stegemann, H. and Stalder, K. (1967) Determination of hydroxyproline. Clin. Chim. Acta 18, 267–273.

    Article  PubMed  CAS  Google Scholar 

  6. Woessner, J. F. (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93, 440–447.

    Article  PubMed  CAS  Google Scholar 

  7. Burleigh, M. C., Barrett, A. J., and Lazarus, G. S. (1974) A lysosomal enzyme that degrades native collagen. Biochem. J. 137, 387–398.

    PubMed  CAS  Google Scholar 

  8. Chomczynski, P. and Mackey, K. (1995) Modification of the tri reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques 19, 942–945.

    PubMed  CAS  Google Scholar 

  9. Haines, D. S. and Gillespie, D. H. (1992) RNA abundance measured by a lysate RNase protection assay. Biotechniques 12, 736–741.

    PubMed  CAS  Google Scholar 

  10. Binette, F., McQuaid, D. P., Haudenschild, D. R., Yaeger, P. C., McPherson, J. M., and Tubo, R. (1998) Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J. Orthop. Res. 16L, 207–216.

    Article  Google Scholar 

  11. Hoemann, C. H., Sun, J., Chrzanowski, V., and Buschmann, M. D. (2002) A multivalent assay to detect DNA, RNA, glycosaminoglycan, protein, and collagen content of milligram samples of cartilage or chondrocytes grown in chitosan hydrogel. Anal. Biochem. 300, 1–10.

    Article  PubMed  CAS  Google Scholar 

  12. Gehrsitz, A., McKenna, L. A., Soder S., Kirchner, T., and Aigner T. (2002) Isolation of RNA from small human articular cartilage specimens allows quantification of mRNA expression levels in local articular cartilage defects. J. Orthop. Res. 19, 478–481.

    Article  Google Scholar 

  13. Matyas, J. R., Huang, D., Chung, M., and Adams, M. E. (2002) Regional quantification of cartilage type II collagen and aggrecan mRNA in joints with early experimental osteoarthritis. Arthritis Rheum. 46, 1536–1543.

    Article  PubMed  CAS  Google Scholar 

  14. Bluteau, G., Gouttenoire, J., Conrozier, T., et al. (2002) Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament (ACL) section. Biorheology 39, 247–258.

    PubMed  CAS  Google Scholar 

  15. Langelier, A., Suetterlin, R., Hoemann, C. D., Aebi, U., and Buschmann, M. D. (2000) The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin and vimentin filaments. J. Histochem. Cytochem. 48, 1307–1320.

    PubMed  CAS  Google Scholar 

  16. Sajdera, S. W. and Hascall, V. C. (1969) Proteinpolysaccharide complex from bovine nasal cartilage. J. Biol. Chem. 244, 77–87.

    PubMed  CAS  Google Scholar 

  17. Heinegard, D. and Sommarin, Y. (1987) Isolation and characterization of proteoglycans. Methods Enzymol. 144, 319–372.

    Article  PubMed  CAS  Google Scholar 

  18. Mankin, H. J. and Lippiello, L. (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Joint Surg. Am. 52, 424–434.

    PubMed  CAS  Google Scholar 

  19. Kempson, G. E., Muir, H., Swanson, S. A. V., and Freeman, M. A. R. (1970) Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochem. Biophys. Acta. 215, 70–77.

    PubMed  CAS  Google Scholar 

  20. Venn, M. and Maroudas, A. (1977) Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. Ann. Rheum. Dis. 36, 121–129.

    Article  PubMed  CAS  Google Scholar 

  21. Amiel, D., Coutts, R. D., Harwood, F. L., Ishizue, K. K., and Kleiner, J. B. (1988) The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. Connect. Tissue Res. 18, 27–39.

    Article  PubMed  CAS  Google Scholar 

  22. Richardson, D. W. and Clark, C. C. (1990) Biochemical changes in articular cartilage opposing full-and partial-thickness cartilage lesions in horses. Am. J. Vet. Res. 51, 118–122.

    PubMed  CAS  Google Scholar 

  23. Vachon, A. M., McIlwraith, C. W., and Keeley, F. W. (1991) Biochemical study of repair of induced osteochondral defects of the distal portion of the radial carpal bone in horses by use of periosteal autografts. Am. J. Vet. Res. 52, 328–332.

    PubMed  CAS  Google Scholar 

  24. Brama, P. A., Tekoppele, J. M., Bank, R. A., Barneveld, A., and VanWeeren, P. R. (2000) Functional adaptation of equine articular cartilage: the formation of regional biochemical characteristics up to age one year. Equine Vet. J. 32, 217–221.

    Article  PubMed  CAS  Google Scholar 

  25. Burkhardt, D., Hwa, S. Y., and Ghosh, P. (2001) A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections: its application to determine the effects of diacerhein on cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 9, 238–247.

    Article  PubMed  CAS  Google Scholar 

  26. Murray, R. C., Birch, H. L., Lakhani, K., and Goodship, A. E. (2001) Subchondral bone thickness, hardness and remodelling are influenced by short-term exercise in a site-specific manner. J. Orthop. Res. 19, 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  27. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745–758.

    Article  PubMed  CAS  Google Scholar 

  28. Eggli, P. S., Hunziker, E. B., and Schenk, R. K. (1988) Quantitation of structural features characterizing weight-and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat. Rec. 222, 217–227.

    Article  PubMed  CAS  Google Scholar 

  29. Sah, R. L., Yang, A. S., Chen, A. C., et al. (1997) Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J. Orthop. Res. 15, 197–203.

    Article  PubMed  CAS  Google Scholar 

  30. Lee, C. R., Grodzinsky, A. J., Hsu, H. P., Martin, S. D., and Spector, M. (2000) Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee. J. Orthop. Res. 18, 790–799.

    Article  PubMed  CAS  Google Scholar 

  31. Treppo, S., Koepp, H., Quan, E. C., Cole, A. A., Kuettner, K. E., and Grodzinsky, A. J. (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18, 739–748.

    Article  PubMed  CAS  Google Scholar 

  32. Dumont, J., Ionescu, M, Reiner A., et al. (1999) Mature full-thickness articular cartilage explants attached to bone are physiologically stable over long-term culture in serum-free media. Connect. Tissue Res. 40, 259–272.

    Article  PubMed  CAS  Google Scholar 

  33. Ameer, G. A., Mahmood, T. A., and Langer, R. (2002) A biodegradable composite scaffold for cell transplantation. J. Orthop. Res. 20, 16–19.

    Article  PubMed  CAS  Google Scholar 

  34. Hunziker, E. B., Quinn, T. M., and Hauselmann, H. J. (2002) Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10, 564–572.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis, R. J., MacFarland, A. K., Anandavijayan, S., and Aspden, R. M. (1988) Material properties and biosynthetic activity of articular cartilage from the bovine carpo-metacarpal joint. Osteoarthritis Cartilage 6, 383–392.

    Article  Google Scholar 

  36. Mankin, H. J. (1974) The reaction of articular cartilage to injury and osteoarthritis (Second of Two Parts). N. Engl. J. Med. 291, 1335–1340.

    Article  PubMed  CAS  Google Scholar 

  37. Mow, V. C., Ratcliffe, A., and Poole A. R. (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13, 67–97.

    Article  PubMed  CAS  Google Scholar 

  38. Maroudas, A. (1990) Different ways of expressing concentration of cartilage constituents with special reference to the tissue’s organization and functional properties, in Methods in Cartilage Research (Maroudas, A. and Kuettner, K. E., eds.), Academic, London, pp. 211–219.

    Google Scholar 

  39. Eyre, D. (2001) Collagen of articular cartilage. Arthritis Res. 4, 30–35.

    Article  PubMed  Google Scholar 

  40. Page Thomas, D. P., King B., Stephens, T., and Dingle, J. T. (1991) In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1. Ann. Rheum. Dis. 50, 75–80.

    Article  PubMed  CAS  Google Scholar 

  41. Richardson, D. W. and Clark, C. C. (1990) Biochemical changes in articular cartilage opposing full-and partial-thickness cartilage lesions in horses. Am. J. Vet. Res. 51, 118–122.

    PubMed  CAS  Google Scholar 

  42. Verbruggen, G., Cornelissen, M., Almqvist, K. F., et al. (2000) Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage 8, 170–179.

    Article  PubMed  CAS  Google Scholar 

  43. Front, P. Aprile, F., Mitrovic, D. R., and Swann, D. A. (1989) Age-related changes in the synthesis of matrix macromolecules by bovine articular cartilage. Connect. Tissue Res. 19, 121–133.

    Article  PubMed  CAS  Google Scholar 

  44. Sims, C. D., Butler, P. E. M., Cao, Y. L., et al. (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast. Reconst. Surg. 101, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  45. Riesle, J., Hollander, A. P., Langer, R., Freed, L. E., and Vunjak-Novakovic, G. (1998) Collagen in tissue-engineered cartilage: types, structure, and crosslinks J. Cell. Biochem. 71, 313–327.

    Article  PubMed  CAS  Google Scholar 

  46. Hollander, A. P., Heathfield, T. F., Webber, C., et al. (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93, 1722–1732.

    Article  PubMed  CAS  Google Scholar 

  47. Stone, J., Akhtar, H., Botchway, S., and Pennock, C. A. (1994) Interaction of 1,9-dimethylmethylene blue with glycosaminoglycans. Ann. Clin. Biochem. 31, 147–152.

    PubMed  CAS  Google Scholar 

  48. Vunjak-Novakovic, G., Martin, I., Obradovic, B., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130–138.

    Article  PubMed  CAS  Google Scholar 

  49. Hoemann, C. D., Sun, J., Légaré, A., McKee, M. D., and Buschmann, M. D. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Submitted.

    Google Scholar 

  50. Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63, 197–205.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, F., Dunkelman, N., Peterson, A., Davisson, T., De La Torre, R., and Jain, D. (1999) Bioreactor development for tissue-engineered cartilage. Ann. NY Acad. Sci. 875, 405–411.

    Article  PubMed  CAS  Google Scholar 

  52. Grande, D. A., Halberstadt, C., Naughton, G., Schwartz, R., and Manji, R. (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res. 34, 211–220.

    Article  PubMed  CAS  Google Scholar 

  53. Yu, H., Grynpas, M., and Kandel, R. A. (1997) Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro. Biomaterials 18, 1425–1431.

    Article  PubMed  CAS  Google Scholar 

  54. Sun, Y., Hurtig, M., Pilliar, R. M., Grynpas, M., and Kandel, R. A. (2001) Characterization of nucleus pulposus-like tissue formed in vitro. J. Orthop. Res. 19, 1078–1084.

    Article  PubMed  CAS  Google Scholar 

  55. Nehrer, S., Breinan, H. A., Ramappa, A., et al. (1997) Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J. Biomed. Mater. Res. 38, 95–104.

    Article  PubMed  CAS  Google Scholar 

  56. Toolan, B. C., Frenkel, S. R., Pachence, J. M., Yalowitz, L., and Alexander, H. (1996) Effects of growth-factor enhanced culture on a chondrocyte-collagen implant for cartilage repair. J. Biomed. Mater. Res. 31, 273–280.

    Article  PubMed  CAS  Google Scholar 

  57. Bryant, S. J. and Anseth, K. S. (2001) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59, 63–72.

    Article  Google Scholar 

  58. Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., and Grodzinsky, A. J. (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA 99, 9996–10001.

    Article  PubMed  CAS  Google Scholar 

  59. Wong, M., Siegrist, M., Wang, X., and Hunziker, E. (2001) Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J. Orthop. Res. 19, 493–499.

    Article  PubMed  CAS  Google Scholar 

  60. Passaretti, D., Silverman, R. P., Huang, W., et al. (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng. 7, 805–815.

    Article  PubMed  CAS  Google Scholar 

  61. Elisseeff, J., Anseth, K., Sims, D., et al. (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast. Reconstr. Surg. 104, 1014–1022.

    Article  PubMed  CAS  Google Scholar 

  62. Oegema, T. R., Carpenter, B. J., and Thompson, R. C. (1984) Fluorometric determination of DNA in cartilage of various species. J. Orthop. Res. 1, 345–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Hoemann, C.D. (2004). Molecular and Biochemical Assays of Cartilage Components. In: De Ceuninck, F., Sabatini, M., Pastoureau, P. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine, vol 101. Humana Press. https://doi.org/10.1385/1-59259-821-8:127

Download citation

  • DOI: https://doi.org/10.1385/1-59259-821-8:127

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-505-7

  • Online ISBN: 978-1-59259-821-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics