Skip to main content

Immortalization of Human Articular Chondrocytes for Generation of Stable, Differentiated Cell Lines

  • Protocol
Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 100))

Abstract

Immortalized chondrocytes of human origin have been developed to serve as reproducible models for studying chondrocyte function. In this chapter, methods for immortalization of primary human chondrocytes with SV40-TAg, HPV-16 E6/E7, and telomerase by retrovirally mediated transduction and selection for neomycin resistance are described. However, stable integration of an immortalizing gene stabilizes proliferative capacity, but not the differentiated chondrocyte phenotype. Thus, strategies for selection of chondrocyte cell lines, involving the maintenance of high cell density and moderation of cell proliferation, are also described. The methods for immortalization and selection are applicable to the development of chondrocyte cell lines using any immortalizing agent. Although immortalized chondrocytes should not be considered as substitutes for primary chondrocytes, they may be useful tools for evaluating and further validating mechanisms relevant to cartilage biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldring, M. B. (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 4, 1916ā€“1926.

    ArticleĀ  Google ScholarĀ 

  2. Goldring, M. B., Sandell, L. J., Stephenson, M. L., and Krane, S. M. (1986) Immune interferon suppresses levels of procollagen mRNA and type II collagen synthesis in cultured human articular and costal chondrocytes. J. Biol. Chem. 261, 9049ā€“9056.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889ā€“895.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Alema, S., Tato, F., and Boettiger, D. (1985) Myc and src oncogenes have complementary effects on cell proliferation and expression of specific extracellular matrix components in definitive chondroblasts. Mol. Cell. Biol. 5, 538ā€“544.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Gionti, E., Pontarelli, G., and Cancedda, R. (1985) Avian myelocytomatosis virus immortalizes differentiated quail chondrocytes. Proc. Natl. Acad. Sci. USA 82, 2756ā€“2760.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Horton, W. E., Jr, Cleveland, J., Rapp, U., et al. (1988) An established rat cell line expressing chondrocyte properties. Exp. Cell Res. 178, 457ā€“468.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Thenet, S., Benya, P. D., Demignot, S., Feunteun, J., and Adolphe, M. (1992) SV40-immortalization of rabbit articular chondrocytes: alteration of differentiated functions. J. Cell. Physiol. 150, 158ā€“167.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Mallein-Gerin, F. and Olsen, B. R. (1993) Expression of simian virus 40 large T (tumor) oncogene in chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc. Natl. Acad. Sci. USA 90, 3289ā€“3293.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Grigoriadis, A. E., Heersche, J. N. M., and Aubin, J. E. (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell Biol. 106, 2139ā€“2151.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Bernier, S. M. and Goltzman, D. (1993) Regulation of expression of the chondrogenic phenotype in a skeletal cell line (CFK2) in vitro. J. Bone Miner. Res. 8, 475ā€“484.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Lefebvre, V., Garofalo, S., and deCrombrugghe, B. (1995) Type X collagen gene expression in mouse chondrocytes immortalized by a temperature-sensitive simian virus 40 large tumor antigen. J. Cell Biol. 128, 239ā€“245.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Mataga, N., Tamura, M., Yanai, N., et al. (1996) Establishment of a novel chondrocyte-like cell line derived from transgenic mice harboring the temperature-sensitive simian virus 40 large T-antigen. J. Bone Miner. Res. 11, 1646ā€“1654.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Benoit, B., Thenet-Gauci, S., Hoffschir, F., Penformis, P., Demignot, S., and Adolphe, M. (1995) SV40 large T antigen immortalization of human articular chondrocytes. In Vitro Cell. Dev. Biol. 31, 174ā€“177.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Steimberg, N., Viengchareun, S., Biehlmann, F., et al. (1999) SV40 large T antigen expression driven by col2a1 regulatory sequences immortalizes articular chondrocytes but does not allow stabilization of type II collagen expression. Exp. Cell Res. 249, 248ā€“259.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Goldring, M. B., Birkhead, J. R., Suen, L.-F., et al. (1994) Interleukin-1Ī²-modulated gene expression in immortalized human chondrocytes. J. Clin. Invest. 94, 2307ā€“2316.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Robbins, J. R., Thomas, B., Tan, L., et al. (2000) Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1Ī². Arthritis Rheum. 43, 2189ā€“2201.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Grigolo, B., Roseti, L., Neri, S., et al. (2002) Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: maintenance of differentiated phenotype under defined culture conditions. Osteoarthritis Cartilage 10, 879ā€“889.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Piera-Velazquez, S., Jimenez, S. A., and Stokes, D. (2002) Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum. 46, 683ā€“693.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895ā€“2902.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Ory, D. S., Neugeboren, B. A., and Mulligan, R. C. (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11,400ā€“11,406.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Jat, P. S., Cepko, C. L., Mulligan, R. C., and Sharp, P. A. (1986) Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol. Cell Biol. 6, 1204ā€“1217.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Jat, P. S. and Sharp, P. A. (1989) Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 9, 1672ā€“1681.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Harley, C. B. (2002) Telomerase is not an oncogene. Oncogene 21, 494ā€“502.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Cepko, C. L. and Pear, W. (2002) Introduction of DNA into mammalian cells, in Short Protocols in Molecular Biology, 5th Ed., Vol. 1, (Ausebel, F. M., Brent, R., Kingston, R. E., et al., eds.), John Wiley, New York, NY, pp. 9ā€“1ā€“9ā€“77.

    Google ScholarĀ 

  25. Bodnar, A. G., Ouellette, M., Frolkis, M., et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349ā€“352.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458ā€“460.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Goldring, M. B. (1996) Human chondrocyte cultures as models of cartilage-specific gene regulation, in Methods in Molecular Biology: Human Cell Culture Protocols (Jones, G. E., ed.), Humana, Totowa, NJ, pp. 217ā€“231.

    ChapterĀ  Google ScholarĀ 

  28. Robbins, J. R. and Goldring, M. B. (1998) Methods for preparation of immortalized human chondrocyte cell lines, in Methods in Molecular Medicine: Tissue Engineering Methods and Protocols (Morgan, J. R. and Yarmush, M. L., eds.), Humana, Totowa, NJ, pp. 173ā€“192.

    Google ScholarĀ 

  29. Kokenyesi, R., Tan, L., Robbins, J. R., and Goldring, M. B. (2000) Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype. Arch. Biochem. Biophys. 383, 79ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Loeser, R. F., Sadiev, S., Tan, L., and Goldring, M. B. (2000) Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for Ī±1Ī²1 and Ī±2Ī²1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage 8, 96ā€“105.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Lu Valle, P., Iwamoto, M., Fanning, P., Pacifici, M., and Olsen, B. R. (1993) Multiple negative elements in a gene that codes for an extracellular matrix protein, collagen X, restrict expression to hypertrophic chondrocytes. J. Cell Biol. 121, 1173ā€“1179.

    ArticleĀ  Google ScholarĀ 

  32. Viengchareun, S., Thenet-Gauci, S., Steimberg, N., Blancher, C., Crisanti, P., and Adolphe, M. (1997) The transfection of rabbit articular chondrocytes is independent of their differentiation state. In Vitro Cell Dev. Biol. Anim. 33, 15ā€“17.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Madry, H. and Trippel, S. B. (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 7, 286ā€“291.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Batra, R. K., Olsen, J. C., Hoganson, D. K., Caterson, B., and Boucher, R. C. (1997) Retroviral gene transfer is inhibited by chondroitin sulfate proteoglycans/glycosaminoglycans in malignant pleural effusions. J. Biol. Chem. 272, 11,736ā€“11,743.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Goldring, M.B. (2004). Immortalization of Human Articular Chondrocytes for Generation of Stable, Differentiated Cell Lines. In: Sabatini, M., Pastoureau, P., De Ceuninck, F. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicineā„¢, vol 100. Humana Press. https://doi.org/10.1385/1-59259-810-2:023

Download citation

  • DOI: https://doi.org/10.1385/1-59259-810-2:023

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-247-6

  • Online ISBN: 978-1-59259-810-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics