Automated NMR Structure Calculation With CYANA

  • Peter Güntert
Part of the Methods in Molecular Biology™ book series (MIMB, volume 278)


This chapter gives an introduction to automated nuclear magnetic resonance (NMR) structure calculation with the program CYANA. Given a sufficiently complete list of assigned chemical shifts and one or several lists of cross-peak positions and columes from two-, three-, or four-dimensional nuclear Overhauser effect spectroscopy (NOESY) spectra, the assignment of the NOESY cross-peaks and the three-dimensional structure of the protein in solution can be calculated automatically with CYANA.

Key Words

Protein structure NMR structure determination conformational constraints automated structure determination automated assignment NOESY assignment CYANA program network anchoring constraint combination torsion angle dynamics 


  1. 1.
    Moseley, H. N. B. and Montelione, G. T. (1999) Automated analysis of NMR assignments and structures for proteins. Curr. Opin. Struct. Biol. 9, 635–642.PubMedCrossRefGoogle Scholar
  2. 2.
    Solomon, I. (1955) Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565.CrossRefGoogle Scholar
  3. 3.
    Macura, S. and Ernst, R. R. (1980) Elucidation of cross relaxation in liquids by 2D NMR spectroscopy. Mol. Phys. 41, 95–117.CrossRefGoogle Scholar
  4. 4.
    Neuhaus, D. and Williamson, M. P. (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis. VCH, Weinheim, Germany.Google Scholar
  5. 5.
    Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227.PubMedCrossRefGoogle Scholar
  6. 6.
    Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996) A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22, 789–828.CrossRefGoogle Scholar
  7. 7.
    Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Bartels, C., Xia, T. H., Billeter, M., Güntert, P., and Wüthrich, K. (1995) The program XEASY for computer-supported NMR-spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10.CrossRefGoogle Scholar
  9. 9.
    Johnson, B. A. and Blevins, R. A. (1994) NMR View—a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.CrossRefGoogle Scholar
  10. 10.
    Kraulis, P. J. (1989) ANSIG—a program for the assignment of protein H-1 2D NMR spectra by interactive computer graphics. J. Magn. Reson. 24, 627–633.Google Scholar
  11. 11.
    Helgstrand, M., Kraulis, P., Allard, P., and Härd, T. (2000) ANSIG for Windows: an interactive computer program for semiautomatic assignment of protein NMR spectra J. Biomol. NMR 18, 329–336.PubMedCrossRefGoogle Scholar
  12. 12.
    Koradi, R., Billeter, M., Engeli, M., Güntert, P., and Wüthrich, K. (1998) Toward fully automatic peak picking and integration of biomolecular NMR spectra. J. Magn. Reson. 135, 288–297.PubMedCrossRefGoogle Scholar
  13. 13.
    Herrmann, T., Güntert, P., and Wüthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189.PubMedCrossRefGoogle Scholar
  14. 14.
    Doreleijers, J. F., Mading, S., Maziuk, D., Sojourner, K., Yin, L., Zhu, J., Markley, J. L., et al. (2003) BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank. J. Biomol. NMR 26, 139–146.PubMedCrossRefGoogle Scholar
  15. 15.
    Mumenthaler, C. and Braun, W. (1995) Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. J. Mol. Biol. 254, 465–480.PubMedCrossRefGoogle Scholar
  16. 16.
    Mumenthaler, C., Güntert, P., Braun, W., and Wüthrich, K. (1997) Automated procedure for combined assignment of NOESY spectra and three-dimensional protein structure determination. J. Biomol. NMR 10, 351–362.PubMedCrossRefGoogle Scholar
  17. 17.
    Nilges, M., Macias, M., O’Donoghue, S. I., and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance constraints: the refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–4228PubMedCrossRefGoogle Scholar
  18. 18.
    Nilges, M. and O’Donoghue, S. I. (1998) Ambiguous NOEs and automated NOE assignment. Prog. NMR Spectrosc. 32, 107–139.CrossRefGoogle Scholar
  19. 19.
    Linge, J. P., O’Donoghue, S. I., and Nilges, M. (2001) Automated assignment of ambiguous nuclear Overhauser effects with ARIA. Methods Enzymol. 339, 71–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Linge, J. P., Habeck, M., Rieping, W., and Nilges, M. (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316.PubMedCrossRefGoogle Scholar
  21. 21.
    Nilges, M. (1993) A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17, 297–309.PubMedCrossRefGoogle Scholar
  22. 22.
    Nilges, M. (1995) Calculation of protein structures with ambiguous distance restraints: automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245, 645–660.PubMedCrossRefGoogle Scholar
  23. 23.
    Güntert, P., Braun, W., and Wüthrich, K. (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530.PubMedCrossRefGoogle Scholar
  24. 24.
    Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.PubMedCrossRefGoogle Scholar
  25. 25.
    Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220, 671–680.PubMedCrossRefGoogle Scholar
  26. 26.
    Katz, H., Walter, R., and Somorjay, R. L. (1979) Rotational dynamics of large molecules. Computers Chemistry 3, 25–32.CrossRefGoogle Scholar
  27. 27.
    Bae, D. S. and Haug, E. J. (1987) A recursive formulation for constrained mechanical system dynamics, part I: open loop systems. Mech. Struct. Mech. 15, 359–382.Google Scholar
  28. 28.
    Mazur, A. K. and Abagyan, R. A. (1989) New methodology for computer-aided modelling of biomolecular structure and dynamics (I): non-cyclic structures. J. Biomol. Struct. Dyn. 4, 815–832.Google Scholar
  29. 29.
    Mazur, A. K., Dorofeev, V. E., and Abagyan, R. A. (1991) Derivation and testing of explicit equations of motion for polymers described by internal coordinates. J. Comp. Phys. 92, 261–272.CrossRefGoogle Scholar
  30. 30.
    Jain, A., Vaidehi, N., and Rodriguez, G. (1993) A fast recursive algorithm for molecular dynamics simulation. J. Comp. Phys. 106, 258–268.Google Scholar
  31. 31.
    Kneller, G. R. and Hinsen, K. (1994) Generalized Euler equations for linked rigid bodies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 50, 1559–1564.CrossRefGoogle Scholar
  32. 32.
    Mathiowetz, A. M., Jain, A., Karasawa, N., and Goddard, W. A., III. (1994) Protein simulations using techniques suitable for large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Proteins 20, 227–247.PubMedCrossRefGoogle Scholar
  33. 33.
    Rice, L. M. and Brünger, A. T. (1994) Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290.PubMedCrossRefGoogle Scholar
  34. 34.
    Stein, E. G., Rice, L. M., and Brünger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164.PubMedCrossRefGoogle Scholar
  35. 35.
    Nilges, M., Clore, G. M., and Gronenborn, A. M. (1988) Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317–324.PubMedCrossRefGoogle Scholar
  36. 36.
    Brünger, A. T. (1992) X-PLOR version 3.1: a system for X-ray crystallography and NMR. Yale University Press, New Haven, CT.Google Scholar
  37. 37.
    Enggist, E., Thöny-Meyer, L., Güntert, P., and Pervushin, K. (2002) NMR structure of the heme chaperone CcmE reveals a novel functional motif. Structure 10, 1551–1557.PubMedCrossRefGoogle Scholar
  38. 38.
    Jee, J. G. and Güntert, P. (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J. Struct. Funct. Genomics 4, 179–189.PubMedCrossRefGoogle Scholar
  39. 39.
    Güntert, P. (1998) Structure calculation of biological macromolecules from NMR data. Q. Rev. Biophys. 31, 145–237.PubMedCrossRefGoogle Scholar
  40. 40.
    Antuch, W., Güntert, P., and Wüthrich, K. (1996) Ancestral βγ-crystallin precursor structure in a yeast killer toxin, Nat. Struct. Biol. 3, 662–665PubMedCrossRefGoogle Scholar
  41. 41.
    Calzolai, L., Lysek, D. A., Güntert, P., von Schroetter, C., Riek, R., Zahn, R., et al. (2000) NMR structures of three single-residue variants of the human prion protein. Proc. Natl. Acad. Sci. USA 97, 8340–8345.PubMedCrossRefGoogle Scholar
  42. 42.
    Zahn, R., Güntert, P., von Schroetter, C., and Wüthrich, K. (2003) NMR structure of a human prion protein with two disulfide bridges. J. Mol. Biol. 326, 225–234.PubMedCrossRefGoogle Scholar
  43. 43.
    Ellgaard, L., Riek, R., Herrmann, T., Güntert, P., Braun, D., Helenius, A., et al. (2001) NMR structure of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 98, 3133–3138.PubMedCrossRefGoogle Scholar
  44. 44.
    Horst, R., Damberger, F., Luginbühl, P., Güntert, P., Peng, G., Nikonova, L., et al. (2001) NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. USA 98, 14,374–14,379.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee, D., Damberger, F. D., Peng, G., Horst, R., Güntert, P., Nikonova, L., et al. (2002) NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 531, 314–318.PubMedCrossRefGoogle Scholar
  46. 46.
    Miura, T., Klaus, W., Ross, A., Güntert, P., and Senn, H. (2002) The NMR structure of the class I human ubiquitin-conjugating enzyme 2b. J. Biomol. NMR 22, 89–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Hilge, M., Siegal, G., Vuister, G. W., Güntert, P., Gloor, S. M., and Abrahams, J. P. (2003) ATP-induced conformational changes of the nucleotide binding domain of Na,K-ATPase. Nat. Struct. Biol. 10, 10–18.CrossRefGoogle Scholar
  48. 48.
    Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids. Clarendon Press, Oxford, UK.Google Scholar
  49. 49.
    Abe, H., Braun, W., Noguti, T. and Go, N. (1984) Rapid calculation of first and second derivatives of conformational energy with respect to dihedral angles in proteins: general recurrent equations. Computers Chemistry 8, 239–247.CrossRefGoogle Scholar
  50. 50.
    Hockney, R. W. (1970) The potential calculation and some applications. Meth. Comput. Phys. 9, 136–211.Google Scholar
  51. 51.
    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.CrossRefGoogle Scholar
  52. 52.
    Hare, B. J. and Wagner, G. (1999) Application of automated NOE assignment to three-dimensional structure refinement of a 28 kDa single-chain T cell receptor. J. Biomol. NMR 15, 103–113.PubMedCrossRefGoogle Scholar
  53. 53.
    Ösapay, K. and Case, D. A. (1991) A new analysis of proton chemical shifts in proteins. J. Am. Chem. Soc. 113, 9436–9444.CrossRefGoogle Scholar
  54. 54.
    Sitkoff, D. and Case, D. A. (1997) Density functional calculations of proton chemical shifts in model peptides. J. Am. Chem. Soc. 119, 12,262–12,273.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Peter Güntert
    • 1
  1. 1.RIKEN Genomic Sciences CenterYokohamaJapan

Personalised recommendations