Residual Dipolar Couplings in Protein Structure Determination

  • Eva de Alba
  • Nico Tjandra
Part of the Methods in Molecular Biology™ book series (MIMB, volume 278)


Each magnetic nucleus behaves like a magnetic dipole able to create a local magnetic field at the position of nearby nuclei. In the presence of an external magnetic field, the local field modifies the original Larmor frequency of the affected nucleus. Such an interaction is called the dipole-dipole interaction or dipolar coupling. Its magnitude depends on, among other factors, the distance between the interacting nuclei and the angle that the internuclear vector forms with the magnetic field. Through this angular dependence it is possible to relate the position of the two interacting nuclei with respect to an arbitrary axis system of reference. Therefore, dipolar couplings can be used to obtain structural information.

In liquid samples, which usually provide high-resolution nuclear magnetic resonance (NMR) spectra, the internuclear vector moves isotropically and the dipolar coupling averages to zero. In the solid state, where this vector has a fixed orientation, the dipole-dipole interactions are numerous and strong, broadening NMR signals such that structural information at high resolution cannot be obtained. An intermediate situation is achieved by partially restricting molecular tumbling of liquid samples. The alignment of a fraction of molecules in the presence of the magnetic field allows the measurement of dipolar couplings. Because they are scaled down owing to partial alignment, we refer to them as residual dipolar couplings (RDCs). The structural information obtained from RDCs has impacted enormously traditional protein structure determination based on nuclear Overhauser effect-derived distance restraints. Methods to measure RDCs and their application to protein structure determination are illustrated.

Key Words

NMR residual dipolar coupling magnetic alignment protein structure 


  1. 1.
    Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules, I: theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.CrossRefGoogle Scholar
  2. 2.
    Bax, A., Kontaxis, G., and Tjandra, N. (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol. 339, 127–174.PubMedCrossRefGoogle Scholar
  3. 3.
    Tjandra, N. and Bax, A. (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114.PubMedCrossRefGoogle Scholar
  4. 4.
    Clore, G. M., Starich, M. R., and Gronenborn, A. M. (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10,571–10,572.CrossRefGoogle Scholar
  5. 5.
    Hansen, M. R., Mueller, L., and Pardi, A. (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074.PubMedCrossRefGoogle Scholar
  6. 6.
    Bodenhausen, G. and Ruben, D. J. (1980) Natural abundance 15N NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189.CrossRefGoogle Scholar
  7. 7.
    Bax, A., Ikura, M., Kay, L. E., Torchia, D. A., and Tschudin, R. (1990) Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson. 86, 304–318.Google Scholar
  8. 8.
    Ottiger, M. and Bax, A. (1998) Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J. Biomol. NMR 12, 361–372.PubMedCrossRefGoogle Scholar
  9. 9.
    Tycko, R., Blanco, F. J., and Ishii, Y. (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340, 9341.CrossRefGoogle Scholar
  10. 10.
    Sass, H. J., Musco, G., Stahl, S. J., Wingfield, P. T., and Grzesiek, S. (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309.PubMedCrossRefGoogle Scholar
  11. 11.
    Ishii, Y., Markus, M. A., and Tycko, R. (2001) Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel. J. Biomol. NMR 21, 141–151.PubMedCrossRefGoogle Scholar
  12. 12.
    Chou, J. J., Gaemers, S., Howder, B., Louis, J. M., and Bax, A. (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J. Biomol. NMR 21, 377–382.PubMedCrossRefGoogle Scholar
  13. 13.
    Ottiger, M., Delaglio, F., and Bax, A. (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378.PubMedCrossRefGoogle Scholar
  14. 14.
    Ikura, M., Kay, L. E., and Bax, A. (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy: application to calmodulin. Biochemistry 29, 4659–4667.PubMedCrossRefGoogle Scholar
  15. 15.
    Santoro, J. and King, G. C. (1992) A constant-time 2D over Bodenhausen experiment for inverse correlation of isotopically enriched species. J. Magn. Reson. 97, 202–207.Google Scholar
  16. 16.
    Ottiger, M., Delaglio, F., Marquardt, J. L., Tjandra, N., and Bax, A. (1998) Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure calculation. J. Magn. Reson. 134, 365–369.PubMedCrossRefGoogle Scholar
  17. 17.
    Tjandra, N. and Bax, A. (1997) Large variations in Open image in new window chemical shift anisotropy in proteins correlate with secondary structure. J. Am. Chem. Soc. 119, 9576, 9577.CrossRefGoogle Scholar
  18. 18.
    de Alba, E., Suzuki, M., and Tjandra, N. (2001) Simple multidimensional NMR experiments to obtain different types of one-bond dipolar couplings simultaneously. J. Biomol. NMR 19, 63–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Clore, G. M., Gronenborn, A. M., and Bax, A. (1998) A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 131, 159–162.PubMedCrossRefGoogle Scholar
  20. 20.
    Saas, H. J., Musco, G., Stahl, S. J., Wingfield, P. T., and Grzesiek, S. (2001) An easy way to include weak alignment constraints into NMR structure calculations. J. Biomol. NMR 21, 275–280.CrossRefGoogle Scholar
  21. 21.
    Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M., and Bax, A. (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738.PubMedCrossRefGoogle Scholar
  22. 22.
    Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Res. 160, 65–73.CrossRefGoogle Scholar
  23. 23.
    Ottiger, M. and Bax, A. (1999) Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. J. Biomol. NMR 13, 187–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Clore, G. M., Starich, M. R., Bewley, C. A., Cai, M. L., and Kuszewski, J. (1999) Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints. J. Am. Chem. Soc. 121, 6513, 6514.CrossRefGoogle Scholar
  25. 25.
    Clore, G. M. and Garret, D. S. (1999) R-factor, Free R, and complete cross-validation for dipolar coupling refinement of structures. J. Am. Chem. Soc. 121, 9008–9012.CrossRefGoogle Scholar
  26. 26.
    Brunger, A. T., Clore, G. M., Gronenborn, A. M., Saffrich, R., and Nilges, M. (1993) Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science 261, 328–331.PubMedCrossRefGoogle Scholar
  27. 27.
    Chou, J. J., Delaglio, F., and Bax, A. (2000) Measurement of one-bond 15N-13C′ dipolar couplings in medium sized proteins. J. Biomol. NMR 18, 101–105.PubMedCrossRefGoogle Scholar
  28. 28.
    Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.PubMedCrossRefGoogle Scholar
  29. 29.
    Tjandra, N., Marquardt, J. L., and Clore, G. M. (2000) Direct refinement against proton-proton dipolar couplings in NMR structure determination of macromolecules. J. Magn. Reson. 142, 393–396.PubMedCrossRefGoogle Scholar
  30. 30.
    de Alba, E. and Tjandra, N. (2002) NMR dipolar couplings for the structure determination of biopolymers in solution. Prog. Nucl. Magn. Reson. Spectrosc. 40, 175–197.CrossRefGoogle Scholar
  31. 31.
    Baber, J. L., Libutti, D., Levens, D., and Tjandra, N. (1999) High precision solution structure of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc transcription factor. J. Mol. Biol. 289, 949–962.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Eva de Alba
    • 1
  • Nico Tjandra
    • 1
  1. 1.Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesda

Personalised recommendations