Skip to main content

Mouse Models of Triplet Repeat Diseases

  • Protocol
  • 961 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 277))

Summary Title

Since their discovery in 1991, triplet repeat mutations have been found to be the cause of genomic fragile sites, two of which are linked to mental retardation, myotonic dystrophy, and several late-onset neurodegenerative diseases. In all cases, these mutations exhibit gametic and/or somatic instability once they have expanded into the mutant range. The mutations are located in coding and noncoding gene regions and have been found to act by dominant and recessive mechanisms. A wide range of mouse models has been generated to understand both of the mechanisms that underlie repeat instability and the molecular pathogenesis of the diseases. Mouse models have proved extremely useful in these goals and are now also being used for the preclinical testing of therapeutic compounds. This chapter reviews the successes and limitations of the approaches that have been developed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

    Article  PubMed  CAS  Google Scholar 

  2. La Spada, A. R., Wilson, E. M., Lubahn, D. B., et al. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Article  PubMed  Google Scholar 

  3. Campuzano, V., Montermini, L., Molto, M. D., et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  4. Gusella, J. F. and MacDonald, M. E. (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Rev. Neurosci. 1, 109–115.

    Article  CAS  Google Scholar 

  5. Mankodi, A. and Thornton, C. A. (2002) Myotonic syndromes. Curr. Opin. Neurol. 15, 545–552.

    Article  PubMed  Google Scholar 

  6. Koob, M. D., Moseley, M. L., Schut, L. J., et al. (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet. 21, 379–384.

    Article  PubMed  CAS  Google Scholar 

  7. O’Donnell, W. T. and Warren, S. T. (2002) A decade of molecular studies of fragile X syndrome. Annu. Rev. Neurosci. 25, 315–338.

    Article  PubMed  Google Scholar 

  8. Jin, P. and Warren, S. T. (2003) New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem. Sci. 28, 152–158.

    Article  PubMed  CAS  Google Scholar 

  9. The Dutch-Belgian Fragile X Consortium (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23–33.

    Google Scholar 

  10. Frank Kooy, R. (2003) Of mice and the fragile X syndrome. Trends Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  11. Slegtenhorst-Eegdeman, K. E., de Rooij, D. G., Verhoef-Post, M., et al. (1998) Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development. Endocrinology 139, 156–162.

    Article  PubMed  CAS  Google Scholar 

  12. Comery, T. A., Harris, J. B., Willems, P. J., et al. (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404.

    Article  PubMed  CAS  Google Scholar 

  13. Irwin, S. A., Idupulapati, M., Gilbert, M. E., et al. (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–146.

    Article  PubMed  Google Scholar 

  14. Chen, L. and Toth, M. (2001) Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  15. Bontekoe, C. J., Bakker, C. E., Nieuwenhuizen, I. M., et al. (2001) Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum. Mol. Genet. 10, 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  16. Patel, P. I. and Isaya, G. (2001) Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am. J. Hum. Genet. 69, 15–24.

    Article  PubMed  CAS  Google Scholar 

  17. Puccio, H. and Koenig, M. (2002) Friedreich ataxia: a paradigm for mitochondrial diseases. Curr. Opin. Genet. Dev. 12, 272–277.

    Article  PubMed  CAS  Google Scholar 

  18. Cossee, M., Puccio, H., Gansmuller, A., et al. (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 9, 1219–1226.

    Article  PubMed  CAS  Google Scholar 

  19. Puccio, H., Simon, D., Cossee, M., et al. (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nature Genet. 27, 181–186.

    Article  PubMed  CAS  Google Scholar 

  20. Miranda, C. J., Santos, M. M., Ohshima, K., et al. (2002) Frataxin knockin mouse. FEBS Lett. 512, 291–297.

    Article  PubMed  CAS  Google Scholar 

  21. Pook, M. A., Al-Mahdawi, S., Carroll, C. J., et al. (2001) Rescue of the Friedreich’s ataxia knockout mouse by human YAC transgenesis. Neurogenetics 3, 185–193.

    PubMed  CAS  Google Scholar 

  22. Meola, G. (2000) Myotonic dystrophies. Curr. Opin. Neurol. 13, 519–525.

    Article  PubMed  CAS  Google Scholar 

  23. Ranum, L. P. and Day, J. W. (2002) Dominantly inherited, non-coding microsatellite expansion disorders. Curr. Opin. Genet. Dev. 12, 266–271.

    Article  PubMed  CAS  Google Scholar 

  24. Reddy, S., Smith, D. B., Rich, M. M., et al. (1996) Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nature Genet. 13, 325–335.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen, G., Groenen, P. J., Bachner, D., et al. (1996) Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nature Genet. 13, 316–324.

    Article  PubMed  CAS  Google Scholar 

  26. Mounsey, J. P., Mistry, D. J., Ai, C. W., et al. (2000) Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum. Mol. Genet. 9, 2313–2320.

    PubMed  CAS  Google Scholar 

  27. Berul, C. I., Maguire, C. T., Aronovitz, M. J., et al. (1999) DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J. Clin. Invest. 103, R1–R7.

    Article  PubMed  CAS  Google Scholar 

  28. Sarkar, P. S., Appukuttan, B., Han, J., et al. (2000) Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nature Genet. 25, 110–114.

    Article  PubMed  CAS  Google Scholar 

  29. Klesert, T. R., Cho, D. H., Clark, J. I., et al. (2000) Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nature Genet. 25, 105–109.

    Article  PubMed  CAS  Google Scholar 

  30. Wakimoto, H., Maguire, C. T., Sherwood, M. C., et al. (2002) Characterization of cardiac conduction system abnormalities in mice with targeted disruption of Six5 gene. J. Interv. Cardiol. Electrophysiol. 7, 127–135.

    Article  Google Scholar 

  31. Liquori, C. L., Ricker, K., Moseley, M. L., et al. (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867.

    Article  PubMed  CAS  Google Scholar 

  32. Mankodi, A., Logigian, E., Callahan, L., et al. (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773.

    Article  PubMed  CAS  Google Scholar 

  33. Mankodi, A., Takahashi, M. P., Jiang, H., et al. (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44.

    Article  PubMed  CAS  Google Scholar 

  34. Seznec, H., Agbulut, O., Sergeant, N., et al. (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum. Mol. Genet. 10, 2717–2726.

    Article  PubMed  CAS  Google Scholar 

  35. Mangiarini, L., Sathasivam, K., Seller, M., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  36. Schilling, G., Becher, M. W., Sharp, A. H., et al. (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  37. Laforet, G. A., Sapp, E., Chase, K., et al. (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J. Neurosci. 21, 9112–9123.

    PubMed  CAS  Google Scholar 

  38. Reddy, P. H., Williams, M., Charles, V., et al. (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nature Genet. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  39. Hodgson, J. G., Agopyan, N., Gutekunst, C. A., et al. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  40. Shelbourne, P. F., Killeen, N., Hevner, R. F., et al. (1999) A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet. 8, 763–774.

    Article  PubMed  CAS  Google Scholar 

  41. Levine, M. S., Klapstein, G. J., Koppel, A., et al. (1999) Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J. Neurosci. Res. 58, 515–532.

    Article  PubMed  CAS  Google Scholar 

  42. Wheeler, V. C., White, J. K., Gutekunst, C. A., et al. (2000) Long glutamine tracts cause nuclear localization of a novel form of Huntington in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9, 503–513.

    Article  PubMed  CAS  Google Scholar 

  43. Lin, C. H., Tallaksen-Greene, S., Chien, W. M., et al. (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum. Mol. Genet. 10, 137–144.

    Article  PubMed  CAS  Google Scholar 

  44. Burright, E. N., Clark, H. B., Servadio, A., et al. (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948.

    Article  PubMed  CAS  Google Scholar 

  45. Huynh, D. P., Figueroa, K., Hoang, N., et al. (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nature Genet. 26, 44–50.

    Article  PubMed  CAS  Google Scholar 

  46. Cemal, C. K., Carroll, C. J., Lawrence, L., et al. (2002) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum. Mol. Genet. 11, 1075–1094.

    Article  PubMed  CAS  Google Scholar 

  47. Yvert, G., Lindenberg, K. S., Picaud, S., et al. (2000) Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum. Mol. Genet. 9, 2491–2506.

    Article  PubMed  CAS  Google Scholar 

  48. Yvert, G., Lindenberg, K. S., Devys, D., et al. (2001) SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum. Mol. Genet. 10, 1679–1692.

    Article  PubMed  CAS  Google Scholar 

  49. La Spada, A. R., Fu, Y., Sopher, B. L., et al. (2001) Polyglutamine-expanded ataxin-7 antagonizes crx function and induces cone-rod dystrophy in a mouse model of sca7. Neuron 31, 913–927.

    Article  PubMed  Google Scholar 

  50. Watase, K., Weeber, E. J., Xu, B., et al. (2002) A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34, 905–919.

    Article  PubMed  CAS  Google Scholar 

  51. Yoo, S. Y., Pennesi, M. E., Weeber, E. J., et al. (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37, 383–401.

    Article  PubMed  CAS  Google Scholar 

  52. Schilling, G., Wood, J. D., Duan, K., et al. (1999) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24, 275–286.

    Article  PubMed  CAS  Google Scholar 

  53. Sato, T., Oyake, M., Nakamura, K., et al. (1999) Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum. Mol. Genet. 8, 99–106.

    Article  PubMed  CAS  Google Scholar 

  54. Abel, A., Walcott, J., Woods, J., et al. (2001) Expression of expanded repeat androgen receptor produces neurologic disease in transgenic mice. Hum. Mol. Genet. 10, 107–116.

    Article  PubMed  CAS  Google Scholar 

  55. Adachi, H., Kume, A., Li, M., et al. (2001) Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death. Hum. Mol. Genet. 10, 1039–1048.

    Article  PubMed  CAS  Google Scholar 

  56. Katsuno, M., Adachi, H., Kume, A., et al. (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35, 843–854.

    Article  PubMed  CAS  Google Scholar 

  57. McManamny, P., Chy, H. S., Finkelstein, D. I., et al. (2002) A mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 11, 2103–2111.

    Article  PubMed  CAS  Google Scholar 

  58. Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  59. Li, H., Li, S. H., Cheng, A. L., et al. (1999) Ultrastructural localization and progressive formation of neuropil aggregates in Huntington’s disease transgenic mice. Hum. Mol. Genet. 8, 1227–1236.

    Article  PubMed  CAS  Google Scholar 

  60. Skinner, P. J., Koshy, B. T., Cummings, C. J., et al. (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389, 971–974.

    Article  PubMed  CAS  Google Scholar 

  61. DiFiglia, M., Sapp, E., Chase, K. O., et al. (1997) Aggregation of Huntington in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  62. Gutekunst, C. A., Li, S. H., Yi, H., et al. (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534.

    PubMed  CAS  Google Scholar 

  63. Schilling, G., Jinnah, H. A., Gonzales, V., et al. (2001) Distinct behavioral and neuropathological abnormalities in transgenic mouse models of HD and DRPLA. Neurobiol. Dis. 8, 405–418.

    Article  PubMed  CAS  Google Scholar 

  64. Cummings, C. J., Sun, Y., Opal, P., et al. (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518.

    Article  PubMed  CAS  Google Scholar 

  65. Adachi, H., Katsuno, M., Minamiyama, M., et al. (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J. Neurosci. 23, 2203–2211.

    PubMed  CAS  Google Scholar 

  66. Cha, J. H., Kosinski, C. M., Kerner, J. A., et al. (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc. Natl. Acad. Sci. USA 95, 6480–6485.

    Article  PubMed  CAS  Google Scholar 

  67. Luthi-Carter, R., Strand, A., Peters, N. L., et al. (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum. Mol. Genet. 9, 1259–1271.

    Article  PubMed  CAS  Google Scholar 

  68. Lin, X., Antalffy, B., Kang, D., et al. (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neurosci. 3, 157–163.

    Article  PubMed  CAS  Google Scholar 

  69. Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., et al. (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci. 20, 4389–4397.

    PubMed  CAS  Google Scholar 

  70. Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., et al. (2001) Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol. Dis. 8, 479–491.

    Article  PubMed  CAS  Google Scholar 

  71. Ferrante, R. J., Andreassen, O. A., Dedeoglu, A., et al. (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 22, 1592–1599.

    PubMed  CAS  Google Scholar 

  72. Schilling, G., Coonfield, M. L., Ross, C. A., et al. (2001) Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington’s disease transgenic mouse model. Neurosci. Lett. 315, 149–153.

    Article  PubMed  CAS  Google Scholar 

  73. Schiefer, J., Landwehrmeyer, G. B., Luesse, H. G., et al. (2002) Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington’s disease. Mov. Disord. 17, 748–757.

    Article  PubMed  Google Scholar 

  74. Andreassen, O. A., Ferrante, R. J., Dedeoglu, A., et al. (2001) Lipoic acid improves survival in transgenic mouse models of Huntington’s disease. Neuroreport 12, 3371–3373.

    Article  PubMed  CAS  Google Scholar 

  75. Clifford, J. J., Drago, J., Natoli, A. L., et al. (2002) Essential fatty acids given from conception prevent topographies of motor deficit in a transgenic model of Huntington’s disease. Neuroscience 109, 81–88.

    Article  PubMed  CAS  Google Scholar 

  76. Karpuj, M. V., Becher, M. W., Springer, J. E., et al. (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nature Med. 8, 143–149.

    Article  PubMed  CAS  Google Scholar 

  77. Dedeoglu, A., Kubilus, J. K., Jeitner, T. M., et al. (2002) Therapeutic effects of cystamine in a murine model of Huntington’s disease. J. Neurosci. 22, 8942–8950.

    PubMed  CAS  Google Scholar 

  78. Sanchez, I., Mahlke, C., and Yuan, J. (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379.

    Article  PubMed  CAS  Google Scholar 

  79. Hockly, E., Richon, V. M., Woodman, B., et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  80. Chen, M., Ona, V. O., Li, M., et al. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Med. 6, 797–801.

    Article  PubMed  CAS  Google Scholar 

  81. Smith, D. L., Woodman, B., Mahal, A., et al. (2003) Minocycline and doxycylcine do not improve phenotype in the R6/2 model of HD. Ann. Neurol., 54, 186–196.

    Article  PubMed  CAS  Google Scholar 

  82. Heiser, V., Engemann, S., Brocker, W., et al. (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99(Suppl. 4), 16,400–16,406.

    Article  PubMed  CAS  Google Scholar 

  83. Katsuno, M., Adachi, H., Doyu, M., et al. (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nature Med. 9, 768–773.

    Article  PubMed  CAS  Google Scholar 

  84. Yamamoto, A., Lucas, J. J., and Hen, R. (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101, 57–66.

    Article  PubMed  CAS  Google Scholar 

  85. Peier, A. M. and Nelson, D. L. (2002) Instability of a premutation-sized CGG repeat in FMR1 YAC transgenic mice. Genomics 80, 423–432.

    Article  PubMed  CAS  Google Scholar 

  86. Mangiarini, L., Sathasivam, K., Mahal, A., et al. (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nature Genet. 15, 197–200.

    Article  PubMed  CAS  Google Scholar 

  87. Wheeler, V. C., Auerbach, W., White, J. K., et al. (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum. Mol. Genet. 8, 115–122.

    Article  PubMed  CAS  Google Scholar 

  88. Kaytor, M. D., Burright, E. N., Duvick, L. A., et al. (1997) Increased trinucleotide repeat instability with advanced maternal age. Hum. Mol. Genet. 6, 2135–2139.

    Article  PubMed  CAS  Google Scholar 

  89. Lorenzetti, D., Watase, K., Xu, B., et al. (2000) Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum. Mol. Genet. 9, 779–785.

    Article  PubMed  CAS  Google Scholar 

  90. Kennedy, L. and Shelbourne, P. F. (2000) Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum. Mol. Genet. 9, 2539–2544.

    Article  PubMed  CAS  Google Scholar 

  91. Telenius, H., Kremer, B., Goldberg, Y. P., et al. (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genet. 6, 409–414.

    Article  PubMed  CAS  Google Scholar 

  92. Monckton, D. G., Coolbaugh, M. I., Ashizawa, K. T., et al. (1997) Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nature Genet. 15, 193–196.

    Article  PubMed  CAS  Google Scholar 

  93. Seznec, H., Lia-Baldini, A. S., Duros, C., et al. (2000) Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 9, 1185–1194.

    Article  PubMed  CAS  Google Scholar 

  94. Fortune, M. T., Vassilopoulos, C., Coolbaugh, M. I., et al. (2000) Dramatic, expansionbiased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum. Mol. Genet. 9, 439–445.

    Article  PubMed  CAS  Google Scholar 

  95. Pearson, C. E., Ewel, A., Acharya, S., et al. (1997) Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  96. Manley, K., Shirley, T. L., Flaherty, L., et al (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473.

    Article  PubMed  CAS  Google Scholar 

  97. Wheeler, V. C., Lebel, L. A., Vrbanac, V., et al. (2003) Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 12, 273–281.

    Article  PubMed  CAS  Google Scholar 

  98. van den Broek, W. J., Nelen, M. R., Wansink, D. G., et al. (2002) Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Bates, G.P., Hay, D.G. (2004). Mouse Models of Triplet Repeat Diseases. In: Kohwi, Y. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology™, vol 277. Humana Press. https://doi.org/10.1385/1-59259-804-8:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-804-8:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-243-8

  • Online ISBN: 978-1-59259-804-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics