Prediction of Drug-Like Molecular Properties

Modeling Cytochrome P450 Interactions
  • Mehran Jalaie
  • Rieko Arimoto
  • Eric Gifford
  • Sabine Schefzick
  • Chris L. Waller
Part of the Methods in Molecular Biology™ book series (MIMB, volume 275)


Preventing drug-drug interactions and reducing drug-related mortalities dictate cleaner and costlier medicines. The cost to bring a new drug to market has increased dramatically over the last 10 years, with post-discovery activities (preclinical and clinical) costs representing the majority of the spend. With the ever-increasing scrutiny that new drug candidates undergo in the post-discovery assessment phases, there is increasing pressure on discovery to deliver higher-quality drug candidates. Given that compound attrition in the early clinical stages can often be attributed to metabolic liabilities, it has been of great interest lately to implement predictive measures of metabolic stability/liability in the drug design stage of discovery. The solution to this issue is wrapped in understanding the basic of the cytochrome P450 (CYP) enzymes functions and structures. Recently, experimental information on the structure of a variety of cytochrome P450 enzymes, major contributors to phase I metabolism, has become readily available. This, coupled with the availability of experimental information on substrate specificities, has lead to the development of numerous computational models (macromolecular, pharmacophore, and structure-activity) for the rationalization and prediction of CYP liabilities. A comprehensive review of these models is presented in this chapter.

Key Words

CYP P450 cytochrome P450 docking structure-based drug discovery pharmacophore QSAR homology models databases computational models ADME/T 


  1. 1.
    Grabowski, H. and Vernon, J. (1996) Longer patents for increased generic competion in the US: the Waxman-Hatch act after one decade. Pharmacoeconomics 10, 110–123.PubMedGoogle Scholar
  2. 2.
    DiMasi, J. A., Hansen, R. W., and Grabowski, H. G. (2003) The price of innovation: new estimates on drug development costs. J. Health Econ. 22, 151–185.PubMedGoogle Scholar
  3. 3.
    Cheng, A., Diller, D. J., Dixon, S. L., Egan, W. J., Lauri, G., and Merz, K. M. (2002) Computation of the physio-chemical properties and data mining of large molecular collections. J. Comput. Chem. 23, 172–183.PubMedGoogle Scholar
  4. 4.
    Lewis, D. F. V. (2001) COMPACT: A structural approach to the modelling of cytochromes P450 and their interactions with xenobiotics. J. Chem. Technol. Biotechnol. 76, 237–244.Google Scholar
  5. 5.
    Danielson, P. B. (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug. M. 3, 561–597.Google Scholar
  6. 6.
    Williams, P. A., Cosme, J., Sridhar, V., Johnson, E. F., and McRee, D. E. (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell 5, 121–31.PubMedGoogle Scholar
  7. 7.
    Poulos, T. L., Finzel, B. C., Gunsalus, I.C., Wagner, G. C., and Kraut, J. (1985) The 2.6 Å crystal structure of pseudomonas pudita cytochrome P-450. J. Biol. Chem. 260, 16,122–16,130.PubMedGoogle Scholar
  8. 8.
    Poulos, T. L., Finzel, B. C., and Howard, A. J. (1986) Crystal structure of substratefree Pseudomonas putida cytochrome P-450. Biochemistry 25, 5314–5322.PubMedGoogle Scholar
  9. 9.
    Ferenczy, G. G. and Morris, G. M. (1989) The active site of cytochrome P-450 nifedipine oxidase: a model-building study. J. Mol. Graph. 7, 206–11.PubMedGoogle Scholar
  10. 10.
    Koymans, L. M., Vermeulen, N. P., Baarslag, A., and Donne-Op den Kelder, G. M. (1993) A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. J. Comput. Aid. Molec. Design 7, 281–9.Google Scholar
  11. 11.
    Szklarz, G. D., Ornstein, R. L., and Halpert, J. R. (1994) Application of 3-dimensional homology modeling of cytochrome P450 2B1 for interpretation of site-directed mutagenesis results. J. Biomol. Struct. Dyn. 12, 061–078.PubMedGoogle Scholar
  12. 12.
    Lewis, D. F. and Lake, B. G. (1995) Molecular modelling of members of the P4502A subfamily: application to studies of enzyme specificity. Xenobiotica 25, 585–98.PubMedGoogle Scholar
  13. 13.
    de Groot, M. J., Vermeulen, N. P., Kramer, J. D., van Acker, F. A., and Donne-Op den Kelder, G. M. (1996) A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. Chem. Res. Toxicol. 9, 1079–91.PubMedGoogle Scholar
  14. 14.
    Modi, S., Paine, M. J., Sutcliffe, M. J., Lian, L. Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. (1996) A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Biochemistry 35, 4540–50.PubMedGoogle Scholar
  15. 15.
    Tan, Y., White, S. P., Paranawithana, S. R., and Yang, C. S. (1997) A hypothetical model for the active site of human cytochrome P4502E1. Xenobiotica 27, 287–99.PubMedGoogle Scholar
  16. 16.
    Chang, Y. T., Stiffelman, O. B., Vakser, I. A., Loew, G. H., Bridges, A., and Waskell, L. (1997) Construction of a 3D model of cytochrome P450 2B4. Protein Eng. 10, 119–129.PubMedGoogle Scholar
  17. 17.
    Lozano, J. J., Lopez-de-Brinas, E., Centeno, N. B., Guigo, R., and Sanz, F. (1997) Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ. J. Comput. Aid. Mol. Design 11, 395–408.Google Scholar
  18. 18.
    Szklarz, G. D. and Halpert, J. R. (1997) Molecular modeling of cytochrome P450 3A4. J. Comput. Aid. Molec. Design 11, 265–72.Google Scholar
  19. 19.
    Dai, R., Pincus, M. R., and Friedman, F. K. (1998) Molecular modeling of cytochrome P450 2B1: mode of membrane insertion and substrate specificity. J. Protein Chem. 17, 120–129.Google Scholar
  20. 20.
    Dai, R., Zhai, S., Wei, X., Pincus, M. R., Vestal, R. E., and Friedman, F. K. (1998) Inhibition of human cytochrome P450 1A2 by flavones: a molecular modeling study. J. Protein Chem. 17, 643–50.PubMedGoogle Scholar
  21. 21.
    Lewis, D. F. V. (1999) Homology modelling of human cytochromes P450 involved in xenobiotic metabolism and rationalization of substrate selectivity. Exp. Toxicol. Pathol. 51, 369–374.PubMedGoogle Scholar
  22. 22.
    Lewis, D. F. and Lake, B. G. (1999) Molecular modelling of CYP4A subfamily members based on sequence homology with CYP102. Xenobiotica 29, 763–81.PubMedGoogle Scholar
  23. 23.
    Payne, V. A., Chang, Y. T., and Loew, G. H. (1999) Homology modeling and substrate binding study of human CYP2C9 enzyme. Proteins: Struct., Funct., Genet. 37, 176–190.Google Scholar
  24. 24.
    Payne, V. A., Chang, Y. T., and Loew, G. H. (1999) Homology modeling and substrate binding study of human CYP2C18 and CYP2C19 enzymes. Proteins: Struct., Funct., Genet. 37, 204–217.Google Scholar
  25. 25.
    De Rienzo, F., Fanelli, F., Menziani, M. C., and De Benedetti, P. G. (2000) Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4. J. Comput. Aid. Molec. Design 14, 93–116.Google Scholar
  26. 26.
    Afzelius, L., Zamora, I., Ridderstrom, M., Andersson, T. B., Karlen, A., and Masimirembwa, C. M. (2001) Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol. Pharmacol. 59, 909–919.PubMedGoogle Scholar
  27. 27.
    Ridderstrom, M., Zamora, I., Fjellstrom, O., and Andersson, T. B. (2001) Analysis of selective regions in the active sites of human cytochromes P450, 2C8, 2C9, 2C18, and 2C19 homology models using GRID/CPCA. J. Med. Chem. 44, 4072–4081.PubMedGoogle Scholar
  28. 28.
    Bathelt, C., Schmid, R. D., and Pleiss, J. (2002) Regioselectivity of CYP2B6: homology modeling, molecular dynamics simulation, docking. J. Mol. Model. 8, 327–35.PubMedGoogle Scholar
  29. 29.
    Bapiro, T. E., Hasler, J. A., Ridderstrom, M., and Masimirembwa, C. M. (2002) The molecular and enzyme kinetic basis for the diminished activity of the cytochrome P450 2D6.17 (CYP2D6.17) variant: potential implications for CYP2D6 phenotyping studies and the clinical use of CYP2D6 substrate drugs in some African populations. Biochem. Pharmacol. 64, 1387–1398.PubMedGoogle Scholar
  30. 30.
    Lewis, D. F. (2002) Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica 32, 305–323.PubMedGoogle Scholar
  31. 31.
    Sechenykh, A. A., Dubanov, A. V., Skvortsov, V. S., et al. (2002) Computer model of 3D structure of cytochrome P450 2B4. Vopr. Med. Khim. 48, 526–538.PubMedGoogle Scholar
  32. 32.
    Szklarz, G. D. and Paulsen, M. D. (2002) Molecular modeling of cytochrome P450 1A1: enzyme-substrate interactions and substrate binding affinities. J. Biomol. Struct. Dyn. 20, 155–162.PubMedGoogle Scholar
  33. 33.
    Wang, Q. and Halpert, J. R. (2002) Combined three-dimensional quantitative structure-activity relationship analysis of cytochrome P450 2B6 substrates and protein homology modeling. Drug Metab. Dispos. 30, 86–95.PubMedGoogle Scholar
  34. 34.
    Kirton, S. B., Baxter, C. A., and Sutcliffe, M. J. (2002) Comparative modelling of cytochromes P450. Adv. Drug Deliv. Rev. 54, 385–406.PubMedGoogle Scholar
  35. 35.
    Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St-Gallay, S., and Sutcliffe, M. J. (2002) Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6. Proteins 49, 216–231.PubMedGoogle Scholar
  36. 36.
    Venhorst, J., ter Laak, A. M., Commandeur, J. N., Funae, Y., Hiroi, T., and Vermeulen, N. P. (2003) Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. J. Med. Chem. 46, 74–86.PubMedGoogle Scholar
  37. 37.
    Lewis, D. F. V., Lake, B. G., Bird, M. G., Loizou, G. D., Dickins, M., and Goldfarb, P. S. (2003) Homology modelling of human CYP2E1 based on the CYP2C5 crystal structure: Investigation of enzyme-substrate and enzyme-inhibitor interactions. Toxicol. in Vitro 17, 93–105.PubMedGoogle Scholar
  38. 38.
    Lewis, D. F., Lake, B. G., Dickins, M., and Goldfarb, P. S. (2003) Homology modelling of CYP2A6 based on the CYP2C5 crystallographic template: enzymesubstrate interactions and QSARs for binding affinity and inhibition. Toxicol. in Vitro 17, 179–90.PubMedGoogle Scholar
  39. 39.
    Lewis, D. F. (2003) Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch. Biochem. Biophys. 409, 32–44.PubMedGoogle Scholar
  40. 40.
    Pearson, W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183, 63–98.PubMedGoogle Scholar
  41. 41.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedGoogle Scholar
  42. 42.
    Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.PubMedGoogle Scholar
  43. 43.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedGoogle Scholar
  44. 44.
    Martin, A. C., MacArthur, M. W., and Thornton, J. M. (1997) Assessment of comparative modeling in CASP2. Proteins Suppl. 1, 14–28.PubMedGoogle Scholar
  45. 45.
    Haines, D. C., Tomchick, D. R., Machius, M., and Peterson, J. A. (2001) Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40, 13,456–13,465.PubMedGoogle Scholar
  46. 46.
    Cupp-Vickery, J. R., Garcia, C., Hofacre, A., and McGee-Estrada, K. (2001) Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J. Mol. Biol. 311, 101–110.PubMedGoogle Scholar
  47. 47.
    Mizuguchi, K., Deane, C. M., Blundell, T. L., and Overington, J. P. (1998) HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci. 7, 2469–2471.PubMedGoogle Scholar
  48. 48.
    Peterson, J. A. and Graham, S. E. (1998) A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6, 1079–1085.PubMedGoogle Scholar
  49. 49.
    Heinemann, F. S. and Ozols, J. (1983) The complete amino acid sequence of rabbit phenobarbital-induced liver microsomal cytochrome P-450. J. Biol. Chem. 258, 4195–4201.PubMedGoogle Scholar
  50. 50.
    Gotoh, O. (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267, 83–90.PubMedGoogle Scholar
  51. 51.
    Nelson, D. R. and Strobel, H. W. (1988) On the membrane topology of vertebrate cytochrome P-450 proteins. J. Biol. Chem. 263, 6038–6050.PubMedGoogle Scholar
  52. 52.
    Nelson, D. R. and Strobel, H. W. (1989) Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry 28, 656–660.PubMedGoogle Scholar
  53. 53.
    Hasemann, C. A., Kurumbail, R. G., Boddupalli, S. S., Peterson, J. A., and Deisenhofer, J. (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3, 41–62.PubMedGoogle Scholar
  54. 54.
    Poulos, T. L., Finzel, B. C., and Howard, A. J. (1987) High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195, 687–700.PubMedGoogle Scholar
  55. 55.
    Alwyn Jones, T. and Kleywegt, G. J. (1999) CASP3 comparative modeling evaluation. Proteins Suppl. 3, 30–46.PubMedGoogle Scholar
  56. 56.
    Holm, L. and Sander, C. (1996) The FSSP database: fold classification based on structure-structure alignment of proteins. Nucleic Acids Res. 24, 206–209.PubMedGoogle Scholar
  57. 57.
    Jones, D. T. (1999) Protein secondary structure prediction based on positionspecific scoring matrices. J. Mol. Biol. 292, 195–202.PubMedGoogle Scholar
  58. 58.
    Rost, B., Sander, C., and Schneider, R. (1994) PHD—an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10, 53–60.PubMedGoogle Scholar
  59. 59.
    Domanski, T. L. and Halpert, J. R. (2001) Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr. Drug. M. 2, 117–137.Google Scholar
  60. 60.
    Szklarz, G. D., He, Y. A., and Halpert, J. R. (1995) Site-directed mutagenesis as a tool for molecular modeling of cytochrome P450 2B1. Biochemistry 34, 14,312–14,322.PubMedGoogle Scholar
  61. 61.
    Gartner, C. A. (2003) Photoaffinity ligands in the study of cytochrome p450 active site structure. Curr. Med. Chem. 10, 671–689.PubMedGoogle Scholar
  62. 62.
    Chang, Y. T. and Loew, G. H. (1999) Homology modeling and substrate binding study of human CYP4A11 enzyme. Proteins 34, 403–415.PubMedGoogle Scholar
  63. 63.
    Sali, A. and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.PubMedGoogle Scholar
  64. 64.
    Antonovic, L., Hodek, P., Smrcek, S., Novak, P., Sulc, M., and Strobel, H. W. (1999) Heterobifunctional photoaffinity probes for cytochrome P450 2B. Arch. Biochem. Biophys. 370, 208–215.PubMedGoogle Scholar
  65. 65.
    Lee, H., Ortiz de Montellano, P. R., and McDermott, A. E. (1999) Deuterium magic angle spinning studies of substrates bound to cytochrome P450. Biochemistry 38, 10,808–10,813.PubMedGoogle Scholar
  66. 66.
    Poli-Scaife, S., Attias, R., Dansette, P. M., and Mansuy, D. (1997) The substrate binding site of human liver cytochrome P450 2C9: an NMR study. Biochemistry 36, 12,672–12,682.PubMedGoogle Scholar
  67. 67.
    Modi, S., Gilham, D. E., Sutcliffe, M. J., et al. (1997) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase. Biochemistry 36, 4461–4470.PubMedGoogle Scholar
  68. 68.
    Koerts, J., Rietjens, I. M., Boersma, M. G., and Vervoort, J. (1995) 1H NMR T1 relaxation rate study on substrate orientation of fluoromethylanilines in the active sites of microsomal and purified cytochromes P450 1A1 and 2B1. FEBS Lett. 368, 279–284.PubMedGoogle Scholar
  69. 69.
    Ohnishi, T., Miura, S., and Ichikawa, Y. (1993) Photoaffinity labeling of cytochrome P-450(11beta) with methyltrienolone as a probe for the substrate binding region. BBA-Protein Struc. Mol. Enzym. 1161, 257–264.Google Scholar
  70. 70.
    Yun, C. H., Hammons, G. J., Jones, G., et al. (1992) Modification of cytochrome P450 1A2 enzymes by the mechanism-based inactivator 2-ethynylnaphthalene and the photoaffinity label 4-azidobiphenyl. Biochemistry 31, 10,556–10,563.PubMedGoogle Scholar
  71. 71.
    Gorokhov, A., Negishi, M., Johnson, E. F., et al. (2003) Explicit water near the catalytic I helix Thr in the predicted solution structure of CYP2A4. Biophys. J. 84, 57–68.PubMedGoogle Scholar
  72. 72.
    Zhao, D., Gilfoyle, D. J., Smith, A. T., and Loew, G. H. (1996) Refinement of 3D models of horseradish peroxidase isoenzyme C: predictions of 2D NMR assignments and substrate binding sites. Proteins 26, 204–216.PubMedGoogle Scholar
  73. 73.
    Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993) Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067.PubMedGoogle Scholar
  74. 74.
    Pontius, J., Richelle, J., and Wodak, S. J. (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol. 264, 121–136.PubMedGoogle Scholar
  75. 75.
    Rodriguez, R., Chinea, G., Lopez, N., Pons, T., and Vriend, G. (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14, 523–528.PubMedGoogle Scholar
  76. 76.
    Colovos, C. and Yeates, T. O. (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519.PubMedGoogle Scholar
  77. 77.
    Luthy, R., Bowie, J. U., and Eisenberg, D. (1992) Assessment of protein models with three-dimensional profiles. Nature 356, 83–85.PubMedGoogle Scholar
  78. 78.
    Podust, L. M., Poulos, T. L., and Waterman, M. R. (2001) Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 98, 3068–3073.PubMedGoogle Scholar
  79. 79.
    Singh, S. B., Shen, L. Q., Walker, M. J., and Sheridan, R. P. (2003) A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. J. Med. Chem. 46, 1330–1336.PubMedGoogle Scholar
  80. 80.
    Ravichandran, K. G., Boddupalli, S. S., Hasermann, C. A., Peterson, J. A., and Deisenhofer, J. (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261, 731–736.PubMedGoogle Scholar
  81. 81.
    Brodie, B., Axelrod, J., Cooper, J. R., et al. (1955) Detoxication of drugs and other foreign compounds by liver microsomes. Science 121, 603–604.PubMedGoogle Scholar
  82. 82.
    Axelrod, J. (1955) The enzymatic demethylation of ephidrine. J. Pharmacol. Exp. Ther. 114, 430–438.PubMedGoogle Scholar
  83. 83.
    Garfinkel, D. (1958) Studies on pig liver microsomes. I. enzymic and pigment composition of different microsomal fractions. Arch. Biochem. Biophys. 77, 493–509.PubMedGoogle Scholar
  84. 84.
    Klingenberg, M. (1958) Pigments of rat liver microsomes. Arch. Biochem. Biophys. 75, 376–386.PubMedGoogle Scholar
  85. 85.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J.A., and Deisenhofer, J. (1994) Crystal structure and refinement of cytochrome at 2.3 Å resolution. J. Mol. Biol. 236, 1169–1185.PubMedGoogle Scholar
  86. 86.
    Raag, R. and Poulos, T. L. (1989) Crystal structure of the carbon-monoxidesubstrate-cytochrome. Biochemistry 28, 7586–7592.PubMedGoogle Scholar
  87. 87.
    Poulos, T. L. and Howard, A. J. (1987) Crystal structure of metyrapone-and phenylimidazole-inhibited complexes of cytochrome. Biochemistry 26, 8165.PubMedGoogle Scholar
  88. 88.
    Raag, R. and Poulos, T. L. (1991) Crystal structures of cytochrome complexed with camphane, thiocamphor and adamantane: factors controlling P450 substrate hydroxylation. Biochemistry 30, 2674–2684.PubMedGoogle Scholar
  89. 89.
    Raag, R., Li, H., Jones, B. C., and Poulos, T. L. (1993) Inhibitor-induced conformational change in cytochrome. Biochemistry 32, 4571–4578.PubMedGoogle Scholar
  90. 90.
    Raag, R. and Poulos, T. L. (1989) The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome. Biochemistry 28, 917–922.PubMedGoogle Scholar
  91. 91.
    Raag, R., Swanson, B. A., Poulos, T.L., and Ortiz de Montellano, P. R. (1990) Formation, crystal structure and rearrangement of a cytochrome P-iron-phenyl complex. Biochemistry 29, 8119–8126.PubMedGoogle Scholar
  92. 92.
    Lewis, D. V. F. (1996) Cytochrome P450: structure, function and mechanism. Taylor and Francis, London.Google Scholar
  93. 93.
    Raucy, J. L. and Allen, S. W. (2001) Recent advances in P450 research. Pharmacogenomics J. 1, 178–186.PubMedGoogle Scholar
  94. 94.
    Lewis, D. V. F. (1986) Physical methods in the study of the active site geometry of cytochrome P450. Drug Metab. Rev. 17, 1–66.PubMedGoogle Scholar
  95. 95.
    Hawkes, B. K. and Dawson, J. H. (1992) Oxygen activation by mono-oxygenase. Active site structure and mechanisms of action. Frontiers in Biotransformation 7, 216–278.Google Scholar
  96. 96.
    Hildebrandt, P. (1992) Resonance Raman spectroscopy of cytochrome P450. Frontiers in Biotransformation 7, 166–215.Google Scholar
  97. 97.
    Schenkman, J. B., Sligar, S. G., and Cinti, D. L. (1981) Substrate interaction with cytochrome P450. Pharmacol. Ther. 12, 43–71.PubMedGoogle Scholar
  98. 98.
    Coon, M. J. and White, R. J. (1980) Cytochrome P450: a versatile catalyst in mono-oxygenation reactions. In Metal ion activation of dioxygen. Wiley, New York.Google Scholar
  99. 99.
    Hanson, L. K., Eaton, W. A., Sligar, S. G., Gunsalus, I.C., Gouterman, M., and Connell, C. R. (1976) Origin of the anomalous Soret Spectra carboxy cytochrome P450. J. Am. Chem. Soc. 98, 2672–2674.PubMedGoogle Scholar
  100. 100.
    Hanson, L. K., Sligar, S. G., and Gunsalus, I. C. (1977) Electronic structure of P450. Croat. Chem. Acta 49, 237–250.Google Scholar
  101. 101.
    Gibson, G. G. and Tamburini, P. P. (1984) Cytochrome P450 spin state: inorganic biochemistry of heme iron ligation and functional significance. Xenobiotica 14, 27–47.PubMedGoogle Scholar
  102. 102.
    Gibson, G. G. and Skett, P. (1994) Introduction of drug metabolism. Chapman and Hall, London.Google Scholar
  103. 103.
    Dawson, J. H. and Sono, M. (1987) Cytochrome P450 chloroperoxidase: thiolateligand heme enzymes. Spectroscopic determination of their active site structure and mechanistic implication of thiolate ligation. Chem. Rev. 87, 1255–1276.Google Scholar
  104. 104.
    Dawson, J. H., Andersson, L. A., and Song, M. (1982) Spectroscopic investigations of ferric cytochrome P-450-CAM ligand complexes. J. Biol. Chem. 257, 3606–3617.PubMedGoogle Scholar
  105. 105.
    Dawson, J. H., et al. (1986) Oxygenated cytochrome P450cam and chloroperoxidase: direct evidence for sulfur donor ligation trans todioxygen and structural characterization using EXAFS spectroscopy. J. Am. Chem. Soc. 108, 8114–8116.Google Scholar
  106. 106.
    Champion, P. M., et al. (1982) Resonance Raman detection of an Fe-S bond in cytochrome P45cam. J. Am. Chem. Soc. 104, 5469–5473.Google Scholar
  107. 107.
    Munro, A. W., et al. (1992) Investigating the function of cytochrome P450 BM-3: a role for the phylogenetically conserved tryptophane residue. Biochem. Soc. Trans. 21, 66.Google Scholar
  108. 108.
    Munro, A. W., et al. (1994) Resonance Raman spectroscopic studies on intact cytohrome P450-BM3. Biochem. Soc. Trans. 22, 54.Google Scholar
  109. 109.
    Egawa, T., et al. (1991) Observation of the O-O stretching Raman band for cytochrome P450cam under catalytic conditions. J. Biol. Chem. 266, 10,246–10,248.PubMedGoogle Scholar
  110. 110.
    Jung, C., et al. (1992) Substrate analouge induced changes of the CO-stretching mode in cytochrome P450cam-carbon monoxide complex. Biochemistry 31, 12,855–12,862.PubMedGoogle Scholar
  111. 111.
    Nagai, M., et al. (1991) Unusual CO bonding geometry in abnormal subunits of hemoglobin M Boston hemoglobin M Saskatoon. Biochemistry 30, 6495–6503.PubMedGoogle Scholar
  112. 112.
    Sharrock, M., et al. (1976) Cytochrome P45cam and its complexes. Mossbauer parameters of the heme iron. Biochim. Biophys. Acta 420, 8–26.PubMedGoogle Scholar
  113. 113.
  114. 114.
  115. 115.
    Wermuth, C. G. (1999) The practice of medicinal chemistry. Academic Press, San Diego, CA.Google Scholar
  116. 116.
    Leach, R. A. (1996) Molecular modelling and applications. Addison Wesely Longman Limited, Singapore.Google Scholar
  117. 117.
    Kuntz, D. I., et al. (1982) Geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161, 262.Google Scholar
  118. 118.
    Li, R., Chen, X., Gong, B., et al. (1996) Structure-based design of parasitic protease inhibitors. Bioorg. Med. Chem. 4, 1421–1427.PubMedGoogle Scholar
  119. 119.
    Kuntz, D. I. (1992) Structure-based strategies for drug design and discovery. Science 257, 1078–1082.PubMedGoogle Scholar
  120. 120.
    Morris, G. M., et al. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1638–1662.Google Scholar
  121. 121.
    Jones, G., Willett, P., and Glen, R. C. (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J. Comput. Aid. Molec. Design 9, 532–549.Google Scholar
  122. 122.
    Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996) A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489.PubMedGoogle Scholar
  123. 123.
    Lewis, D. F. V., Dickins, M., Lake, B. G., Eddershaw, P. J., Tarbit, M. H., and Goldfarb, P. S. (1999) Molecular modelling of the human cytochrome P450 isoform CYP2A6 and investigations of CYP2A substrate selectivity. Toxicology 133, 1–33.PubMedGoogle Scholar
  124. 124.
    Lewis, D. F., Lake, B. G., and Parke, D. V. (1995) Molecular orbital-generated QSARs in a homologous series of alkoxyresorufins and studies of their interactive docking with P450s. Xenobiotica 25, 1355–1369.PubMedGoogle Scholar
  125. 125.
    Lewis, D. F. V., Wiseman, A., and Tarbit, M. H. (1999) Molecular modeling of lanosterol 14-alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives. J. Enz. Inhib. 14, 175–192.Google Scholar
  126. 126.
    Cavalli, A., Greco, G., Novellino, E., and Recanatini, M. (2000) Linking CoMFA and protein homology models of enzyme-inhibitor interactions: an application to non-steroidal aromatase inhibitors. Bioorg. Med. Chem. 8, 2771–2780.PubMedGoogle Scholar
  127. 127.
    Cavalli, A. and Recanatini, M. (2002) Looking for selectivity among cytochrome P450s inhibitors. J. Med. Chem. 45, 251–254.PubMedGoogle Scholar
  128. 128.
    Lewis, D. F. and Moereels, H. (1992) The sequence homologies of cytochromes P-450 and active-site geometries. J. Comput. Aid. Molec. Design 6, 235–252.Google Scholar
  129. 129.
    Ahmed, S. (1999) Modelling the active site of the P-450 family of enzymes involved in steroidogenesis-Potentially a novel approach to the initial (computer based) screening of compounds against the P-450 family of enzymes. J. Pharm. Pharmacol. 51, 254.Google Scholar
  130. 130.
    Szklarz, G. D. and Halpert, J. R. (1998) Molecular basis of P450 inhibition and activation: implications for drug development and drug therapy. Drug Metab. Dispos. 26, 1179–1184.PubMedGoogle Scholar
  131. 131.
    Kobayashi, Y., Fang, X., Szklarz, G. D., and Halpert, J. R. (1998) Probing the active site of cytochrome P450 2B1: metabolism of 7-alkoxycoumarins by the wild type and five site-directed mutants. Biochemistry 37, 6679–6688.PubMedGoogle Scholar
  132. 132.
    Spatzenegger, M., Wang, Q., He, Y. Q., Wester, M. R., Johnson, E. F., and Halpert, J. R. (2001) Amino acid residues critical for differential inhibition of CYP2B4, CYP2B5, and CYP2B1 by phenylimidazoles. Mol. Pharmacol. 59, 475–484.PubMedGoogle Scholar
  133. 133.
    Ji, H., Zhang, W., Zhou, Y., et al. (2000) A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J. Med. Chem. 43, 2493–2505.PubMedGoogle Scholar
  134. 134.
    Jones, B. C., Hyland, R., Ackland, M., Tyman, C. A., and Smith, D. A. (1998) Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab. Dispos. 26, 875–882.PubMedGoogle Scholar
  135. 135.
    DesJarlais, R. L., Sheridan, R. P., Dixon, J. S., Kuntz, I. D., and Venkataraghavan, R. (1986) Docking flexible ligands to macromolecular receptors by molecular shape. J. Med. Chem. 29, 2149–2153.PubMedGoogle Scholar
  136. 136.
    De Voss, J., Zhang, Z., Sibbesen, O., and de Montellano, O. (1997) Substrate docking algorithms and prediction of the substrate specificity of cytochrome P450-cam and its L244 mutant. J. Am. Chem. Soc. 119, 5489.Google Scholar
  137. 137.
    De Voss, J. and Ortiz de Montellano, R. (1995) Computer-assisted, structurebased prediction of substrate for cytochrome P450cam. J. Am. Chem. Soc. 117, 4185–4186.Google Scholar
  138. 138.
    Kuhn, B., Jacobsen, W., Christians, U., Benet, L. Z., and Kollman, P. A. (2001) Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: Insights from docking, molecular dynamics, and quantum chemical calculations. J. Med. Chem. 44, 2027–2034.PubMedGoogle Scholar
  139. 139.
    Lopez de Brinas, E., et al. (2000) European symposium on QSAR: molecular modeling and prediction of bioactivity, Copenhagen, Denmark.Google Scholar
  140. 140.
    Anandatheerthavarada, H. K., Amuthan, G., Biswas, G., et al. (2001) Evolutionarily divergent electron donor proteins interact with P450MT2 through the same helical domain but different contact points. EMBO J. 20, 2394–2403.PubMedGoogle Scholar
  141. 141.
    Jalaie, M. and Erickson, J. A. (2000) Approaches to molecular alignments for CoMFA. J. Comput. Aid. Molec. Design 14, 181–197.Google Scholar
  142. 142.
    Jones, G., Willett, P., Glen, R. C., A. Leach, R., and Taylor, R. (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 246, 43–53.Google Scholar
  143. 143.
    Jones, G., Willett, P., Glen, R. C., A. Leach, R., and Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748.PubMedGoogle Scholar
  144. 144.
    Li, X. Q., Bjorkman, A., Andersson, T. B., Ridderstrom, M., and Masimirembwa, C. M. (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: A new high affinity and turnover enzyme-specific probe substrate. J. Pharmacol. Exp. Ther. 300, 399–407.PubMedGoogle Scholar
  145. 145.
    ALMOND. Multivariate Infometric Analysis S.r.l., Perugia.Google Scholar
  146. 146.
    Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., and Clementi, S. (1993) Generating optimal linear PLS estimations (GOLPE): an advanced chemometric tool for handling 3D-QSAR problems. Quant. Struct.-Act. Relat. 12, 9–20.Google Scholar
  147. 147.
    Masimirembwa, C. M., Ridderstrom, M., Zamora, I., and Andersson, T. B. (2002) Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates. Methods Enzymol. 357, 133–144.PubMedGoogle Scholar
  148. 148.
    Lozano, J. J., Pastor, M., Cruciani, G., et al. (2000) 3D-QSAR methods on the basis of ligand-receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands. J. Comput. Aid. Molec. Design 14, 341–353.Google Scholar
  149. 149.
    Park, J. and Harris, D. (2003) Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics, and density functional calculations. J. Med. Chem. 46, 1645–1660.PubMedGoogle Scholar
  150. 150.
    Keseru, G. M. (2001) A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism. J. Comput. Aid. Molec. Design 15, 649–657.Google Scholar
  151. 151.
    Zhang, Z., Sibbesen, O., and Johnson. R. A. (1998) The substrate specificity of cytocrome P450cam. Bioorg. Med. Chem. 6, 1501–1508.PubMedGoogle Scholar
  152. 152.
    Clark, R. D., Strizhev, A., Leonard, J. M., Blake, J. F., and Matthew, J. B. (2002) Consensus scoring for ligand/protein interactions. J. Mol. Graph. 20, 281–295.Google Scholar
  153. 153.
    Kumar, S., Scott, E. E., Liu, Hong, and Halpert, J. (2003) A rational approach to re-engineer cytochrome P450 2B1 regioselectivity based on the crystal structure of cytochrome P450 2C5. 278, 17,178–17,184.Google Scholar
  154. 154.
    Szklarz, G. D. and Halpert, J. R. (1997) Use of homology modeling in conjunction with site-directed mutagenesis for analysis of structure-function relationships of mammalian cytochromes P450. Life Sci. 61, 2507–2520.PubMedGoogle Scholar
  155. 155.
    He, K., He, Y. A., Szklarz, G. D., Halpert, J. R., and Correia, M. A. (1996) Secobarbital-mediated inactivation of cytochrome P450 2B1 and its active site mutants. Partitioning between heme and protein alkylation and epoxidation. J. Biol. Chem. 271, 25,864–25,872.PubMedGoogle Scholar
  156. 156.
    Lewis, D. F., Ioannides, C., and Parke, D. V. (1986) Molecular dimensions of the substrate binding site of cytochrome P-448. Biochem. Pharmacol. 35, 2179–2185.PubMedGoogle Scholar
  157. 157.
    Ioannides, C. and Parke, D. V. (1987) The cytochromes P-448—a unique family of enzymes involved in chemical toxicity and carcinogenesis. Biochem. Pharmacol. 36, 4197–4207.PubMedGoogle Scholar
  158. 158.
    Sanz, F., Lopez-de-Brinas, E., Rodriguez, J., and Manaut, F. (1994) Theoretical study on the metabolism of caffeine by cytochrome p-450 1A2 and its inhibition. Quant. Struct.-Act. Relat. 13, 281–284.Google Scholar
  159. 159.
    Fuhr, U., Strobl, G., Manaut, F., Anders, E. M., Soergel, F., and Lopez de Brinas, E. (1993) Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol. Pharmacol. 43, 191–199.PubMedGoogle Scholar
  160. 160.
    Lee, H., Yeom, H., Kim, Y. G., et al. (1998) Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Biochem. Pharmacol. 55, 1369–1375.PubMedGoogle Scholar
  161. 161.
    Poso, A., Gynther, J., and Juvonen, R. (2001) A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors. J. Comput. Aid. Molec. Design 15, 195–202.Google Scholar
  162. 162.
    Lewis, D. F., Lake, B. G., Dickins, M., Eddershaw, P. J., Tarbit, M. H., and Goldfarb, P. S. (1999) Molecular modelling of CYP2B6, the human CYP2B isoform, by homology with the substrate-bound CYP102 crystal structure: evaluation of CYP2B6 substrate characteristics, the cytochrome b5 binding site and comparisons with CYP2B1 and CYP2B4. Xenobiotica 29, 361–393.PubMedGoogle Scholar
  163. 163.
    Ekins, S., Bravi, G., Ring, B. J., et al. (1999) Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6. J. Pharmacol. Exp. Ther. 288, 21–29.PubMedGoogle Scholar
  164. 164.
    Mancy, A., Broto, P., Dijols, S., Dansette, P. M., and Mansuy, D. (1995) The substrate binding site of human liver cytochrome P450 2C9: an approach using designed tienilic acid derivatives and molecular modeling. Biochemistry 34, 10,365–10,375.PubMedGoogle Scholar
  165. 165.
    Miners, J. O. and Birkett, D. J. (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45, 525–538.PubMedGoogle Scholar
  166. 166.
    He, M., Korzekwa, K. R., Jones, J. P., Rettie, A. E., and Trager, W. F. (1999) Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch. Biochem. Biophys. 372, 16–28.PubMedGoogle Scholar
  167. 167.
    Mancy, A., Dijols, S., Poli, S., Guengerich, P., and Mansuy, D. (1996) Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9. Biochemistry 35, 16,205–16,212.PubMedGoogle Scholar
  168. 168.
    Jones, B. C., Hawksworth, G., Horne, V. A., et al. (1996) Putative active site template model for cytochrome P4502C9 (tolbutamide hydroxylase). Drug Metab. Dispos. 24, 260–266.PubMedGoogle Scholar
  169. 169.
    Jones, J. P., He, M., Trager, W. F., and Rettie, A. E. (1996) Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P4502C9. Drug Metab. Dispos. 24, 1–6.PubMedGoogle Scholar
  170. 170.
    Haining, R. L., Jones, J. P., Henne, K. R., et al. (1999) Enzymatic determinants of the substrate specificity of CYP2C9: role of B′-C loop residues in providing the pi-stacking anchor site for warfarin binding. Biochemistry 38, 3285–3292.PubMedGoogle Scholar
  171. 171.
    Rao, S., Aoyama, R., Schrag, M., Trager, W. F., Rettie, A., and Jones, J. P. (2000) A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J. Med. Chem. 43, 2789–2796.PubMedGoogle Scholar
  172. 172.
    Ridderstrom, M., Masimirembwa, C., Trump-Kallmeyer, S., Ahlefelt, M., Otter, C., and Andersson, T. B. (2000) Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function. Biochem. Biophys. Res. Commun. 270, 983–987.PubMedGoogle Scholar
  173. 173.
    Ekins, S., Bravi, G., Binkley, S., et al. (2000) Three-and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab. Dispos. 28, 994–1002.PubMedGoogle Scholar
  174. 174.
    Pastor, M., Cruciani, G., McLay, I., Pickett, S., and Clementi, S. (2000) GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J. Med. Chem. 43, 3233–3243.PubMedGoogle Scholar
  175. 175.
    Afzelius, L., Masimirembwa, C. M., Karlen, A., Anderson, T. B., and Zamora, I. (2002) Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. J. Comput. Aid. Molec. Design 16, 443–458.Google Scholar
  176. 176.
    De Groot, M. J., Alex, A. A., and Jones, B. C. (2002) Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J. Med. Chem. 45, 1983–1993.PubMedGoogle Scholar
  177. 177.
    Wolff, T., Distlerath, L. M., Worthington, M. T., et al. (1985) Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling. Cancer Res. 45, 2116–2122.PubMedGoogle Scholar
  178. 178.
    Meyer, U. A., Gut, J., Kronbach, T., Skoda, C., Meier, U. T., Catin, T., and Dayer, P. (1986) The molecular mechanisms of two common polymorphisms of drug oxidation—evidence for functional changes in cytochrome P-450 isozymes catalysing bufuralol and mephenytoin oxidation. Xenobiotica 16, 449–464.PubMedGoogle Scholar
  179. 179.
    Islam, S. A., Wolf, C. R., Lennard, M. S., and Sternberg, M. J. (1991) A threedimensional molecular template for substrates of human cytochrome P450 involved in debrisoquine 4-hydroxylation. Carcinogenesis 12, 2211–2219.PubMedGoogle Scholar
  180. 180.
    Koymans, L., Vermeulen, N. P., van Acker, S. A., et al. (1992) A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem. Res. Toxicol. 5, 211–219.PubMedGoogle Scholar
  181. 181.
    de Groot, M. J., Bijloo, G. J., Hansen, K. T., and Vermeulen, N. P. (1995) Computer prediction and experimental validation of cytochrome P4502D6-dependent oxidation of GBR 12909. Drug Metab. Dispos. 23, 667–669.PubMedGoogle Scholar
  182. 182.
    Ellis, S. W., Hayhurst, G. P., Smith, G., et al. (1995) Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J. Biol. Chem. 270, 29,055–29,058.PubMedGoogle Scholar
  183. 183.
    de Groot, M. J., Bijloo, G. J., Martens, B. J., van Acker, F. A., and Vermeulen, N. P. (1997) A refined substrate model for human cytochrome P450 2D6. Chem. Res. Toxicol. 10, 41–48.PubMedGoogle Scholar
  184. 184.
    de Groot, M. J., Bijloo, G. J., van Acker, F. A., Fonseca Guerra, C., Snijders, J. G., and Vermeulen, N. P. (1997) Extension of a predictive substrate model for human cytochrome P4502D6. Xenobiotica 27, 357–368.PubMedGoogle Scholar
  185. 185.
    Onderwater, R. C., Venhorst, J., Commandeur, J. N., and Vermeulen, N. P. (1999) Design, synthesis, and characterization of 7-methoxy-4-aminomethyl)coumarin as a novel and selective cytochrome P450 2D6 substrate suitable for highthroughput screening. Chem. Res. Toxicol. 12, 555–559.PubMedGoogle Scholar
  186. 186.
    de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., and Jones, B. C. (1999) Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. 42, 1515–1524.PubMedGoogle Scholar
  187. 187.
    Lewis, D. F., Eddershaw, P. J., Goldfarb, P. S., and Tarbit, M. H. (1997) Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 27, 319–339.PubMedGoogle Scholar
  188. 188.
    Hayhurst, G. P., Harlow, J., Chowdry, J., et al. (2001) Influence of phenylalanine-481 substitutions on the catalytic activity of cytochrome P450 2D6. Biochem. J. 355, 373–379.PubMedGoogle Scholar
  189. 189.
    de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., and Jones, B. C. (1999) A novel approach to predicting P450 mediated drug metabolism CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. 42, 4062–4070.PubMedGoogle Scholar
  190. 190.
    Strobl, G. R., Von Kruedener, S., Stockigt, J., Guengerich, F. P., and Wolff, T. (1993) Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. J. Med. Chem. 36, 1136–1145.PubMedGoogle Scholar
  191. 191.
    Ekins, S., Bravi, G., Binkley, S., et al. (1999) Three and four dimensionalquantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. Pharmacogenetics 9, 477–489.PubMedGoogle Scholar
  192. 192.
    Guengerich, F. P., Miller, G. P., Hanna, I. H., et al. (2002) Diversity in the oxidation of substrates by cytochrome P450 2D6: Lack of an obligatory role of aspartate 301-substrate electrostatic bonding. Biochemistry 41, 11,025–11,034.PubMedGoogle Scholar
  193. 193.
    Domanski, T. L., He, Y. A., Khan, K. K., Roussel, F., Wang, Q., and Halpert, J. R. (2001) Phenylalanine and tryptophan scanning mutagenesis of CYP3A4 substrate recognition site residues and effect on substrate oxidation and cooperativity. Biochemistry 40, 10,150–10,160.PubMedGoogle Scholar
  194. 194.
    Korzekwa, K. R., Krishnamachary, N., Shou, M., et al. (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37, 4137–4147.PubMedGoogle Scholar
  195. 195.
    Shou, M., Grogan, J., Mancewicz, J. A., et al. (1994) Activation of CYP3A4: Evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 33, 6450–6455.PubMedGoogle Scholar
  196. 196.
    Hosea, N. A., Miller, G. P., and Guengerich, F. P. (2000) Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry 39, 5929–5939.PubMedGoogle Scholar
  197. 197.
    Wang, R. W., Newton, D. J., Liu, N., Atkins, W. M., and Lu, A. Y. (2000) Human cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent. Drug Metab. Dispos. 28, 360–366.PubMedGoogle Scholar
  198. 198.
    Stresser, D. M., Blanchard, A. P., Turner, S. D., et al. (2000) Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates. Drug Metab. Dispos. 28, 1440–1448.PubMedGoogle Scholar
  199. 199.
    Kenworthy, K. E., Bloomer, J. C., Clarke, S. E., and Houston, J. B. (1999) CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br. J. Clin. Pharmacol. 48, 716–727.PubMedGoogle Scholar
  200. 200.
    Ekins, S., Bravi, G., Wikel, J. H., and Wrighton, S. A. (1999) Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J. Pharmacol. Exp. Ther. 291, 424–433.PubMedGoogle Scholar
  201. 201.
    Ekins, S., Bravi, G., Binkley, S., et al. (1999) Three-and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J. Pharmacol. Exp. Ther. 290, 429–438.PubMedGoogle Scholar
  202. 202.
    Ekins, S., Stresser, D. M., and Andrew Williams, J. (2003) In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol. Sci. 24, 161–166.PubMedGoogle Scholar
  203. 203.
    Lewis, D. F., Eddershaw, P. J., Goldfarb, P. S., and Tarbit, M. H. (1996) Molecular modelling of CYP3A4 from an alignment with CYP102: identification of key interactions between putative active site residues and CYP3A-specific chemicals. Xenobiotica 26, 1067–1086.PubMedGoogle Scholar
  204. 204.
    Cramer, I. I. I. R. D., Patterson, D. E., and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.Google Scholar
  205. 205.
    Marshall, G. R. and Cramer, R. D., 3rd. (1988) Three-dimensional structureactivity relationships. Trends Pharmacol. Sci. 9, 285–289.PubMedGoogle Scholar
  206. 206.
    Pastor, M., Cruciani, G., and Watson, K. (1997) A strategy for the incorporation of water molecules present in a ligand binding site into a 3D QSAR analysis. J. Med. Chem. 40, 4089–4102.PubMedGoogle Scholar
  207. 207.
    Tripos Associates, I. SYBYL. St. Louis, MO.Google Scholar
  208. 208.
    Tripos Associates, I. Alchemy II. St. Louis, MO.Google Scholar
  209. 209.
    Accelrys, InsightII, San Diego, CA.Google Scholar
  210. 210.
    MOPAC, Creative Arts Building 181, Indiana University, Bloomington, IN 47405.Google Scholar
  211. 211.
    Moon, T., Chi, M. H., Kim, D.-H., Yoon, C. N., and Choi, Y.-S. (2000) Quantitative structure-activity relationships (QSAR) study of flavonoid derivatives for inhibition of cytochrome P450 1A2. Quant. Struct.-Act. Relat. 19, 257–263.Google Scholar
  212. 212.
    Lewis, D. F. V., Modi, S., and Dickins, M. (2002) Structure-activity relationship for human. Drug Metab. Rev. 34, 69–82.PubMedGoogle Scholar
  213. 213.
    Lewis, D. F., Ioannides, C., and Parke, D. V. (2003) A quantitative structureactivity relationship (QSAR) study of mutagenicity in several series of organic chemicals likely to be activated by cytochrome P450 enzymes. Teratog. Carcinog. Mutagen 23Suppl. 1, 187–193.Google Scholar
  214. 214.
    Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P. (1985) AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909.Google Scholar
  215. 215.
    Mekenyan, O. G., Veith, G. D., Call, D. J., and Ankley, G. T. (1996) A QSAR evaluation of Ah receptor binding of halogenated aromatic xenobiotics. Environ. Health Perspect. 104, 1302–1310.PubMedGoogle Scholar
  216. 216.
    Lewis, D. F., Jacobs, M. N., Dickins, M., and Lake, B. G. (2002) Quantitative structure-activity relationships for inducers of cytochromes P450 and nuclear receptor ligands involved in P450 regulation within the CYP1, CYP2, CYP3 and CYP4 families. Toxicology 176, 51–57.PubMedGoogle Scholar
  217. 217.
    Waller, C. L. and McKinney, J. D. (1992) Comparative molecular field analysis of polyhalogenated dibenzo-p-dioxins, dibenzofurans, and biphenyls. J. Med. Chem. 35, 3660–3666.PubMedGoogle Scholar
  218. 218.
    Bravi, G. and Wikel, J. H. (2000) Application of Ms-WHIM descriptors 1. Introduction of new molecular surface properties and 2. prediction of binding affinity data. Quant. Struct.-Act. Relat. 19, 29–38.Google Scholar
  219. 219.
    Bravi, G., Gancia, E., Mascagni, P., Pegna, M., Todeschini, R., and Azaliani, A. (1997) MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: a comparative 3D QSAR study in a series of steroids. J. Comput. Aid. Molec. Design 11, 79–92.Google Scholar
  220. 220.
    Lozâno, J. J., Pastor, M., Gago, F., Cruciani, G., Centeno, N. B., and Sanz, F. (1998)Google Scholar
  221. 221.
    Ortiz, A. R., Pisabarro, M. T., Gago, F., and Wade, R. C. (1995) Prediction of drug binding affinities by comparative binding energy analysis. J. Med. Chem. 38, 2681–2691.PubMedGoogle Scholar
  222. 222.
    Ortiz, A. R., Pastor, M., Palomer, A., Cruciani, G., Gago, F., and Wade, R. C. (1997) Reliability of comparative molecular field analysis models: effects of data scaling and variable selection using a set of human synovial fluid phospholipase A2 inhibitors. J. Med. Chem. 40, 1136–1148.PubMedGoogle Scholar
  223. 223.
    Perez, C., Pastor, M., Ortiz, A. R., and Gago, F. (1998) Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. J. Med. Chem. 41, 836–852.PubMedGoogle Scholar
  224. 224.
    Pastor, M., Cruciani, G., and Clementi, S. (1997) Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships. J. Med. Chem. 40, 1455–1464.PubMedGoogle Scholar
  225. 225.
    Lewis, D. F., Modi, S., and Dickins, M. (2002) Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Drug Metab. Rev. 34, 69–82.PubMedGoogle Scholar
  226. 226.
    Lewis, D. F. and Lake, B. G. (2002) Species differences in coumarin metabolism: a molecular modelling evaluation of CYP2A interactions. Xenobiotica 32, 547–561.PubMedGoogle Scholar
  227. 227.
    Rendic, S. and Di Carlo, F. J. (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 29, 413–580.PubMedGoogle Scholar
  228. 228.
    Lewis, D. F. V. and Dickins, M. (2001) Quantitative structure-activity relationships (QSARs) within series of inhibitors for mammalian cytochromes P450 (CYPs). J. Enz. Inhib. 16, 321–330.Google Scholar
  229. 229.
    Lewis, D. F., Ioannides, C., and Parke, D. V. (1995) A quantitative structureactivity relationship study on a series of 10 para-substituted toluenes binding to cytochrome P4502B4 (CYP2B4), and their hydroxylation rates. Biochem. Pharmacol. 50, 619–625.PubMedGoogle Scholar
  230. 230.
    Nanbo, A. and Nanbo, T. (2002) Mechanistic study on N-demethylation catalyzed with P450 by quantitative structure activity relationship using electronic properties of 4-substituted N,N-dimethylaniline. Quant. Struct.-Act. Relat. 21, 613–616.Google Scholar
  231. 231.
    Lesigiarska, I., Pajeva, I., and Yanev, S. (2002) Quantitative structure-activity relationship (QSAR) and three-dimensional QSAR analysis of a series of xanthates as inhibitors and inactivators of cytochrome P450 2B1. Xenobiotica 32, 1063–1077.PubMedGoogle Scholar
  232. 232.
    Stewart, J. J. P. (1989) Optimization of parameters for semiemprirical parameters. 1. Method. J. Comput. Chem. 10, 209–220.Google Scholar
  233. 233.
    Zamora, I., Afzelius, L., and Cruciani, G. (2003) Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J. Med. Chem. 46, 2313–2324.PubMedGoogle Scholar
  234. 234.
    Snyder, R., Sangar, R., Wang, J. B., and Ekins, S. (2002) Three-dimensional quantitative structure activity relationship for CYP2D6 substrates. Quant. Struct.-Act. Relat. 21, 357–368.Google Scholar
  235. 235.
    Lewis, D. F., Sams, C., and Loizou, G. D. (2003) A quantitative structureactivity relationship analysis on a series of alkyl benzenes metabolized by human cytochrome P450 2E1. J. Biochem. Mol. Toxicol. 17, 47–52.PubMedGoogle Scholar
  236. 236.
    Lewis, D. F., Ioannides, C., and Parke, D. V. (1994) Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structureactivity relationships. Xenobiotica 24, 401–408.PubMedGoogle Scholar
  237. 237.
    Waller, C. L., Evans, M. V., and McKinney, J. D. (1996) Modeling the cytochrome P450-mediated metabolism of chlorinated volatile organic compounds. Drug Metab. Dispos. 24, 203–210.PubMedGoogle Scholar
  238. 238.
    Kellogg, G. E., Semus, S. F., and Abraham, D. J. (1991) HINT: a new method of empirical hydrophobic field calculation for CoMFA. J. Comput. Aid. Molec. Design 5, 545–552.Google Scholar
  239. 239.
    Lewis, D. F. and Lake, B. G. (1998) Molecular modelling and quantitative structure-activity relationship studies on the interaction of omeprazole with cytochrome P450 isozymes. Toxicology 125, 31–44.PubMedGoogle Scholar
  240. 240.
    Ekins, S., De Groot, M. J., and Jones, J. P. (2001) Pharmacophore and threedimensional quantitative structure. Drug Metab. Dispos. 29, 936–944.PubMedGoogle Scholar
  241. 241.
    Lewis, D. F., Ioannides, C., Parke, D. V., and Schulte-Hermann, R. (2000) Quantitative structure-activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and hepatomegaly associated with increased DNA synthesis. J. Steroid Biochem. Mol. Biol. 74, 179–185.PubMedGoogle Scholar
  242. 242.
    Pichard, L., Domergue, J., Fourtanier, G., Koch, P., Schran, H. F., and Maurel, P. (1996) Metabolism of the new immunosuppressor cyclosporin G by human liver cytochromes P450. Biochem. Pharmacol. 51, 591–598.PubMedGoogle Scholar
  243. 243.
    Zhao, X. J. and Ishizaki, T. (1997) Metabolic interactions of selected antimalarial and non-antimalarial drugs with the major pathway (3-hydroxylation) of quinine in human liver microsomes. Br. J. Clin. Pharmacol. 44, 505–511.PubMedGoogle Scholar
  244. 244.
    Molnar, L. and Keseru, G. M. (2002) A neural network based virtual screening of cytochrome P450 3A4 inhibitors. Bioorg. Med. Chem. Lett. 12, 419–421.PubMedGoogle Scholar
  245. 245.
    Zuegge, J., Fechner, U., Roche, O., Parrot, N. J., Engkvist, O., and Schneider, G. (2002) A fast virtual screening filter for cytochrome P 450 3A4 inhibition liability of compound libraries. Quant. Struct.-Act. Relat. 21, 249–256.Google Scholar
  246. 246.
    Lewis, D. F. V., Ogg, M. S., Goldfarb, P. S., and Gibson, G. G. (2002) Molecular modelling of the human glucocorticoid receptor (hGR) ligand-binding domain (LBD) by homology with the human estrogen receptor a (hERa) LBD: Quantitative structure-activity relationships within a series of CYP3A4 inducers where induction is mediated via hGR involvement. J. Steroid Biochem. Mol. Biol. 82, 195–199.PubMedGoogle Scholar
  247. 247.
    Wang, K., Budzinski, J. W., Foster, B. C., Durst, T., Arnason, J. T., and Compadre, C. M. (2001) Molecular modeling and 3D-QSAR analysis of the inhibition of cytochrome P450 3A4 (CYP3A4) by dillapiol and its derivatives. Abstr. Pap. Am. Chem. Soc. 269, 0065–7727.Google Scholar
  248. 248.
    Ji, H., Zhang, W., Zhang, M., et al. (2003) Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J. Med. Chem. 46, 474–485.PubMedGoogle Scholar
  249. 249.
    Talele, T. T. and Kulkarni, V. M. (1999) Three-dimensional quantitative structure-activity relationship (QSAR) and receptor mapping of cytochrome P-450(14 alpha DM) inhibiting azole antifungal agents. J. Chem. Inf. Comput. Sci. 39, 204–210.PubMedGoogle Scholar
  250. 250.
    Lewis, D. F., Wiseman, A., and Tarbit, M. H. (1999) Molecular modelling of lanosterol 14 alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives. J. Enz. Inhib. 14, 175–192.Google Scholar
  251. 251.
    Baston, E., Klein, C. D., Grimminger, W., Hebecker, N., and Hartmann, R. W. (2001) Synthesis, evaluation and QSAR studies of highly potent aromatase inhibitors of the piperidinedione type. Anticancer Drug Des. 16, 37–47.PubMedGoogle Scholar
  252. 252.
    Oprea, T. I. and Garcia, A. E. (1996) Three-dimensional quantitative structureactivity relationships of steroid aromatase inhibitors. J. Comput. Aid. Molec. Design 10, 186–200.Google Scholar
  253. 253.
    Recanatini, M. and Cavalli, A. (1998) Comparative molecular field analysis of non-steroidal aromatase inhibitors: an extended model for two different structural classes. Bioorg. Med. Chem. 6, 377–388.PubMedGoogle Scholar
  254. 254.
    Gironés, X. and Carbo-Dorca, R. (2002) Molecular quantum similarity-based QSARs for binding affinities of several steroid sets. J. Chem. Inf. Comput. Sci. 42, 1185–1193.PubMedGoogle Scholar
  255. 255.
    Recanatini, M., Bisi, A., Cavalli, A., et al. (2001) A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 alpha-hydroxylase/C17,20-lyase. J. Med. Chem. 44, 672–680.PubMedGoogle Scholar
  256. 256.
    You, L., Sar, M., Bartolucci, E., Ploch, S., and Whitt, M. (2001) Induction of hepatic aromatase by p,p′-DDE in adult male rats. Mol. Cell. Endocrinol. 178, 207–214.PubMedGoogle Scholar
  257. 257.
    Basak, S. C. (1988) Binding of Barbiturates to Cytochrome P450: A QSAR study using log P and topological indices. Med. Sci. Res. 16, 281–282.Google Scholar
  258. 258.
    Murray, M., Marcus, C. B., and Wilkinson, C. F. (1985) Quantitative structureacvitity relationships in the displacement of the dihydrosafrole metabolite-cytochrome P-450 complex. Quant. Struct.-Act. Relat. 4, 18–22.Google Scholar
  259. 259.
    Gao, H. and Hansch, C. (1996) QSAR of P450 oxidation: on the value of comparing kcat and km with kcat/km. Drug Metab. Rev. 28, 513–526.PubMedGoogle Scholar
  260. 260.
    Tyrakowska, B., Cnubben, N. H., Soffers, A. E., Wobbes, T., and Rietjens, I. M. (1996) Comparative MO-QSAR studies in various species including man. Chem.-Biol. Interact. 100, 187–201.PubMedGoogle Scholar
  261. 261.
    Bird, M. G., Lewis, D. F., Whitman, F. T., Lewis, R. J., Przygoda, R. T., and Witz, G. (2001) Application of process chemistry and SAR modelling to the evaluation of health findings of lower olefins. Chem. Biol. Interact. 135–136, 571–584.PubMedGoogle Scholar
  262. 262.
    Lewis, D. F. (2000) Structural characteristics of human P450s involved in drug metabolism: QSARs and lipophilicity profiles. Toxicology 144, 197–203.PubMedGoogle Scholar
  263. 263.
    Lewis, D. F. (2002) Molecular modeling of human cytochrome P450-substrate interactions. Drug Metab. Rev. 34, 55–67.PubMedGoogle Scholar
  264. 264.
    Lewis, D. F. and Dickins, M. (2002) Factors influencing rates and clearance in P450-mediated reactions: QSARs for substrates of the xenobiotic-metabolizing hepatic microsomal P450s. Toxicology 170, 45–53.PubMedGoogle Scholar
  265. 265.
    Lewis, D. F., Modi, S., and Dickins, M. (2001) Quantitative structure-activity relationships (QSARs) within substrates of human cytochromes P450 involved in drug metabolism. Drug Metab. Drug Interact. 18, 221–242.Google Scholar
  266. 266.
    Ekins, S., Waller, C. L., Swaan, P. W., Cruciani, G., Wrighton, S. A., and Wikel, J. H. (2000) Progress in predicting human ADME parameters in silico. J. Pharm. Tox. Methods 44, 251–271.Google Scholar
  267. 267.
    (2003) Genomatica
  268. 268.
  269. 269.
  270. 270.
    (2003) Oxford BioMedica plc.
  271. 271.
    van de Waterbeemd, H. and Gifford, E. (2003) ADMET in silico modelling: towards prediction paradise? Nature 2, 192–204.Google Scholar
  272. 272.
    Erhardt, P. W. (1999) Drug metabolism: databases and high throughput testing during drug design and development. Blackwell Science Inc., Oxford, UK.Google Scholar
  273. 273.
    van de Waterbeemd, H. and De Groot, M. (2002) Can the internet help to meet the challenges in ADME and e-ADME? SAR QSAR Environ. Res. 13, 391–401.PubMedGoogle Scholar
  274. 274.
  275. 275.
  276. 276.
    Cyprotex. (2003) Cloe Screen™
  277. 277.
    Lewis, D. F., Ioannides, C., and Parke, D. V. (1998) An improved and updated version of the compact procedure for the evaluation of P450-mediated activation. Drug Metab. Rev. 30, 709–737.PubMedGoogle Scholar
  278. 278.
    Lewis, D. F., Ioannides, C., and Parke, D. V. (1998) Further evaluation of COMPACT, the molecular orbital approach for the prospective safety evaluation of chemicals. Mutat. Res. 412, 41–54.PubMedGoogle Scholar
  279. 279.
    Lewis, D. F., Iannides, C., and Parke, D. V. (1995) A retrospective evaluation of COMPACT predictions of the outcome of NTP rodent carcinogenicity testing. Environ. Health Perspect. 103, 176–184.Google Scholar
  280. 280.
    Archakov, A. (2003)
  281. 281.
    Archakov, A. I. and Bachmanova, G. I. (1995) Cytochrome P450 database for prediction of drugs’ fate in living systems. In Vitro Toxicology 8, 49–54.Google Scholar
  282. 282.
    Archakov, A. I. and Bachmanova, G. I. (1995) The usage of cytochrome P450 database (CPD) for prediction of the drugs’ fate in living systems. Alt. Meth. Tox. Life Sci. 11, 205–212.Google Scholar
  283. 283.
    Archakov, A., et al. (2001) Inventory of the cytochrome P450 superfamily. J. Mol. Model. 7, 140–142.Google Scholar
  284. 284.
    Washington, U. O. (2003) Drug Interaction Database:
  285. 285.
  286. 286.
    Erhardt, P. W., IUPAC. (2003) Human Drug Metabolism Database:
  287. 287.
    Highuch, T. V. S. (1975) Pro-drugs as novel drug delivery systems. American Chemical Society, Washington, D.C.Google Scholar
  288. 288.
    Smith, J. N. (1968) The comparative metabolism of xenobiotics. Adv. Comp. Physiol. Biochem. 3, 173–232.PubMedGoogle Scholar
  289. 289.
  290. 290.
    Science, P. (2003) Porus Science, Integrity database:
  291. 291.
  292. 292.
    Klopman, G., Dimayuga, M., and Talafous, J. (1994) A program for the evaluation of metabolic transformation of chemicals. J. Chem. Inf. Comput. Sci. 34, 1320–1325.PubMedGoogle Scholar
  293. 293.
    Talafous, J., Sayre, L. M., Mieyal, J. J., and Klopman, G. (1994) META 2. A dictionary model of mammalian xenobiotic metabolism. J. Chem. Inf. Comput. Sci. 34, 1326–1333.PubMedGoogle Scholar
  294. 294.
    Klopman, G., Tu, M. H., and Talafous, J. (1997) META 3. A genetic algorithm for metabolic transform priorities optimization. J. Chem. Inf. Comput. Sci. 37, 329–334.PubMedGoogle Scholar
  295. 295.
    Klopman, G., Tu, M. H., and Fan, B. T. (1999) META 4. Prediction of the metabolism of polycyclic aromatic hydrocarbons. Theor. Chem. Acc. 102, 33–38.Google Scholar
  296. 296.
    Klopman, G. and Tu, M. (1999) META. A program for the prediction of the products of mammal metabolism of xenobiotics. Blackwell Science, Oxford, UK.Google Scholar
  297. 297.
    MetaCyc. (2003)
  298. 298.
    EcoCyc. (2003)
  299. 299.
    Snyder, R., et al. (1999) Metabolite. Blackwell Science, Oxford, UK.Google Scholar
  300. 300.
    SciVision/MDL. (2003) SciVision, Metabolite:
  301. 301.
    MDL Headquarters, M. I. S., Inc., 14600 Catalina Street, San Leandro, CA 94577, USA. (2003)
  302. 302.
    Darvas, F. (1988) Predicting metabolic pathways by logic programming. J. Mol. Graph. 6, 80–86.Google Scholar
  303. 303.
    Compudrug. (2003)
  304. 304.
    Darvas, F. (1987) QSAR in environmental toxicology, Kaiser, K. (ed.), pp. 71–81.Google Scholar
  305. 305.
    Testa, B. and Jenner, P. (1976) Drug metabolism: chemical and biochemical aspects. New York.Google Scholar
  306. 306.
    Pfeifer, S. and Borchert, H. (1963) Biotransformation von Arzneimitteln. Berlin.Google Scholar
  307. 307.
    Darvas, F., et al. (1999) Drug Metabolism, Erhardt, P. W. (ed.), Blackwell Science, Oxford, UK, pp. 237–270.Google Scholar
  308. 308.
    Hawkins, D. (1989) A survey of the biotransformation of drugs and chemicals. R. Soc. Chem. 1–8.Google Scholar
  309. 309.
    Hayward, J. (1999) Synopsis. Blackwell Science, Oxford, UK.Google Scholar
  310. 310.
  311. 311.
    Greene, N. (1999) In Drug metabolism, Erhardt, P. W. (ed.), Blackwell Science, Oxford, UK, pp. 289–296.Google Scholar
  312. 312.
    Greene, N., Judson, P., Langowski, J., and Marchant, C. A. (1999) Knowledgebased expert systems for toxicity and metabolism prediction: DEREK, StAR, and METEOR. SAR QSAR Environ. Res. 10, 299–313.PubMedGoogle Scholar
  313. 313.
    Langowski, J. and Long, A. (2002) Computer systems for the prediction of xenobiotic metabolism. Adv. Drug. Deliv. Rev. 54, 407–415.PubMedGoogle Scholar
  314. 314.
    Tonnelier, C. A. G., Fox, J., Judson, P. N., Krause, P. J., Pappas, N., and Patel, M. (1997) Representation of chemical structures in knowledge-based systems: the StAR system. J. Chem. Inf. Comput. Sci. 37, 117–123.Google Scholar
  315. 315.
    Judson, P. N., Fox, J., and Krause, P. J. (1996) Using new reasoning technology in chemical information systems. J. Chem. Inf. Comput. Sci. 36, 621–624.PubMedGoogle Scholar
  316. 316.
    NOVASCREEN. (2003)
  317. 317.
    Fabian, P. and Degtyarenko, K. N. (1997) The directory of P450-containing systems in 1996. Nucleic Acids Res. 25, 274–277.PubMedGoogle Scholar
  318. 318.
    David, R. N. s. W. (2003) David, R. Nelson’s webpage:
  319. 319.
    Flockart, D. (2003) The International Scociety of Xenobiotics:,
  320. 320.
    PanVera. (2003) PanVera Corps.:
  321. 321.
    SRI. (2003) SRI International:
  322. 322.
    XenoTech. (2003) XenoTech, LLC:
  323. 323.
    (2003) Human Biologics International:
  324. 324.
    (2003) MDS Panlabs Inc.:
  325. 325.
    (2003) CytoChroma, Inc.:
  326. 326.
    (2003) Metabolic Solutions, Inc.:
  327. 327.
    Harris, R. Z., Tsunoda, S. M., Mroczkowski, P., Wong, H., and Benet, L. Z. (1996) The effects of menopause and hormone replacement therapies on prednisolone and erythromycin pharmacokinetics. Clin. Pharmacol. Ther. 59, 429–435.PubMedGoogle Scholar
  328. 328.
    Tateishi, T., Graham, S. G., Krivoruk, Y., and Wood, A. J. J. (1995) Omeprazole does not affect measured CYP3A4 activity using the erythromycin breath test. Br. J. Clin. Pharmacol. 40, 411–412.PubMedGoogle Scholar
  329. 329.
    (2003) TNO Pharma:
  330. 330.
    (2003) Ricerca, LLC:
  331. 331.
    Nelson, D. R. (2002) Mining databases for cytochrome P450 genes. Methods Enzymol. 357, 3–15.PubMedGoogle Scholar
  332. 332.
    (2003) Affymetrix, Inc.:
  333. 333.
    (2003) Pharmagene, plc.:
  334. 334.
    Lewis, D. F. V. (2000) On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: Towards the prediction of human p450 substrate specificity and metabolism. Biochem. Pharmacol. 60, 293–306.PubMedGoogle Scholar
  335. 335.
    Lewis, D. F. and Dickins, M. (2002) Substrate SARs in human P450s. Drug Discov. Today 7, 918–925.PubMedGoogle Scholar
  336. 336.
    Keseru, G. and Molnar, L. (2002) METAPRINT: a metabolic fingerprint. Application to cassette design for high-throughput ADME screening. J. Chem. Inf. Comput. Sci. 437–444.Google Scholar
  337. 337.
    Gasteiger, J. (2003) In “225th ACS National Meeting.”Google Scholar
  338. 338.
    Amic, D., Lucic, B., Nikolic, S., and Trinajstic, N. (2001) Predicting inhibition of microsomal p-hydroxylation of aniline by aliphatic alcohols: a QSAR approach based on the weighted path numbers. Croat. Chem. Acta 74, 237–250.Google Scholar
  339. 339.
    Halpert, J. R. (1995) Structural basis of selective cytochrome P450 inhibition. Annu. Rev. Pharmacol. Toxicol. 35, 29–53.PubMedGoogle Scholar
  340. 340.
    Lipinski, C. A. (2000) Drug-like properties and the causes of poor solubility and poor permeability. J. Pharm. Tox. Methods 44, 235–249.Google Scholar
  341. 341.
    Oprea, T. I. (2002) Virtual screening in lead discovery: a viewpoint. Molecules 7, 51–62.Google Scholar
  342. 342.
    Ansell, J. (2003) Quantifying new product need: productivity target considered at company level. Pharmaceutical Industry Dynamics, 1–15.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Mehran Jalaie
    • 1
  • Rieko Arimoto
    • 1
  • Eric Gifford
    • 1
  • Sabine Schefzick
    • 1
  • Chris L. Waller
    • 1
  1. 1.Discovery Technologies, Pfizer Global Research and DevelopmentAnn ArborUSA

Personalised recommendations