Skip to main content

Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry of Amino Acids, Peptides, and Proteins

  • Protocol
Capillary Electrophoresis of Proteins and Peptides

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 276))

Abstract

Separation in capillary electrophoresis (CE) is based on the movement of charged compounds inside a background electrolyte under an applied potential. Because the mechanism of separation of CE differs from that of conventional high-performance liquid chromatography (HPLC), where separation is based on the analyte’s hydrophobic properties, CE is often used as a complementary technique to HPLC. In addition, because CE is performed in narrow capillaries at atmospheric pressure, it is used as an alternative to HPLC, capable of handling small sample volumes while providing shorter analysis times with higher efficiency. For the analysis of amino acid, protein, and peptide mixtures in small volume samples such as in single cells, CE has rapidly evolved as a preferred separation technique. The combination of a high-efficiency separation technique, such as CE, with mass spectrometry (MS) detection provides a powerful system for the analysis of complex biological mixtures. In this chapter, a theoretical and practical approach to achieving high-performance CE-MS is discussed and the utility of CE-MS for the analysis of amino acids, peptides, and proteins is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swanek, F. D., Ferris, S. S., and Ewing, A. G. (1996) Capillary electrophoresis for the analysis of single cells: electrochemical, mass spectrometric, and radiochemical detection, in Handbook of Capillary Electrophoresis (Landers, J. P., ed.), CRC, Boca Raton, FL, pp. 495–521.

    Google Scholar 

  2. Kennedy, R. T., Oates, M. D., Cooper, B. R., Nickerson, B., and Jorgenson, J. W. (1989) Microcolumn separations and the analysis of single cells. Science 246, 57–63.

    Article  PubMed  CAS  Google Scholar 

  3. Kennedy, R. T., St. Claire, R. L., White, J. G., and Jorgenson, J. W. (1987) Chemical analysis of single neurons by open tubular liquid chromatography. Mikrochim. Acta. 2, 37–45.

    Article  CAS  Google Scholar 

  4. Kennedy, R. T. and Jorgenson, J. W. (1989) Quantitative analysis of individual neurons by open tubular liquid chromatography with voltammetric detection. Anal. Chem. 61, 436–441.

    Article  PubMed  CAS  Google Scholar 

  5. Oates, M. D., Cooper, B. R., and Jorgenson, J. W. (1990) Quantitative amino acid analysis of individual snail neurons by open tubular liquid chromatography. Anal. Chem. 62, 1573–1577.

    Article  PubMed  CAS  Google Scholar 

  6. Cooper, B. R., Jankowski, J. A., Leszyczyszyn, D. J., Wrightman, R. M., and Jorgenson, J. W. (1992) Quantitative determination of catecholamines in individual bovine adrenomedullary cells by reversed-phase microcolumn liquid chromatography with electrochemical detection. Anal. Chem. 64, 691–694.

    Article  PubMed  CAS  Google Scholar 

  7. Ewing, A. G., Wallingford, R. A., and Olefirowicz, T. M. (1989) Capillary electrophoresis. Anal. Chem. 61, 292A–303A.

    Article  PubMed  CAS  Google Scholar 

  8. Olefirowicz, T. M. and Ewing, A. G. (1990) Capillary electrophoresis in 2 and 5 microns diameter capillaries: application to cytoplasmic analysis. Anal. Chem. 62, 1872–1876.

    Article  PubMed  CAS  Google Scholar 

  9. Olefirowicz, T. M. and Ewing, A. G. (1991) Capillary electrophoresis for sampling single nerve cells. Chemia. 45, 106–108.

    CAS  Google Scholar 

  10. Hogan, B. L. and Yeung, E. S. (1992) Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection. Anal. Chem. 64, 2841–2845.

    Article  PubMed  CAS  Google Scholar 

  11. Olefirowicz, T. M. and Ewing, A. G. (1990) Dopamine concentration in the cytoplasmic compartment of single neurons determined by capillary electrophoresis. J. Neurosci. Meth. 34, 11–15.

    Article  CAS  Google Scholar 

  12. Jorgenson, J. W. and Lukacs, K. D. (1983) Capillary zone electrophoresis. Science 222, 266–272.

    Article  PubMed  CAS  Google Scholar 

  13. Gordon, M. J., Huang, X., Pentoney, Jr., S. L., and Zare, R. N. (1988) Capillary electrophoresis. Science 242, 224–248.

    Article  PubMed  CAS  Google Scholar 

  14. Gilman, S. D. and Ewing, A. G. (1995) Recent advances in the application of capillary electrophoresis to neuroscience. J. Cap. Elec. 2, 1–13.

    CAS  Google Scholar 

  15. Yeung, E. S. (1994) Chemical analysis of single human erythrocytes. Acc. Chem. Res. 27, 409–414.

    Article  CAS  Google Scholar 

  16. Jankowski, J. A., Tracht, S., and Sweedler, J. V. (1995) Assaying single cells with capillary electrophoresis. Trends Anal. Chem. 14, 170–176.

    CAS  Google Scholar 

  17. Cannon, Jr., D. M., Winograd, N., and Ewing, A. G. (2000) Quantitative chemical analysis of single cells. Ann. Rev. Biophys. Biomol. Struct. 29, 239–263.

    Article  CAS  Google Scholar 

  18. Zhang, X., Stuart, J. N., and Sweedler, J. V. (2002) Capillary electrophoresis with wavelength-resolved laser-induced fluorescence detection. Anal. Bioanal. Chem. 373, 332–343.

    Article  PubMed  CAS  Google Scholar 

  19. Preisler J., Hu, P., Rejtar, T., and Karger, B. L. (2000) Capillary electrophoresis—matrix assisted laser desorption/ionization time-of-flight mass spectrometry using a vacuum deposition interface. Anal. Chem. 72, 4785–4795.

    Article  PubMed  CAS  Google Scholar 

  20. Kennedy, R. T., German, I., Thompson, J. E., and Witowski, S. R. (1999) Fast analytical-scale separations by capillary electrophoresis and liquid chromatography. Chem. Rev. 99, 3081–3131.

    Article  PubMed  CAS  Google Scholar 

  21. Pertsen, J. R. and Mohammad, A. D. eds., (2001) Clinical and Forensic Applications of Capillary Electrophoresis, Humana, Totowa, NJ.

    Google Scholar 

  22. Von Brocke, A., Nicholson, G., and Bayer, E. (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22, 1251–1266.

    Article  Google Scholar 

  23. Moini, M. (2002) Capillary electrophoresis mass spectrometry and its application to the analysis of biological mixtures. Anal. Bioanal. Chem. 373, 466–480.

    Article  PubMed  CAS  Google Scholar 

  24. Bocek, P., Deml, M., Gebauer, P., and Dolnik, V. (1988) Analytical Isotachophoresis (Radola, B. J., ed.), VCH, New York.

    Google Scholar 

  25. Dobos, D. (1975) Electrochemical Data: A Handbook for Electrochemists in Industry and Universities. Elsevier Scientific, New York.

    Google Scholar 

  26. Macka, M., Andersson, P., and Haddad, P. R. (1998) Changes in electrolyte pH due to electrolysis during capillary zone electrophoresis. Anal. Chem. 70, 743–749.

    Article  CAS  Google Scholar 

  27. Timperman, A., Tracht, S. E., and Sweedler, J. V. (1996) Dynamic on-column pH monitoring in capillary electrophoresis: application to volume-limited outlet vials. Anal. Chem. 68, 2693–2698.

    Article  PubMed  CAS  Google Scholar 

  28. Bello, M. S. (1996) Electrolytic modification of a buffer during a capillary electrophoresis run. J. Chromatogr. A744, 81–91.

    Article  Google Scholar 

  29. Corstjens, H., Billiet, H. A., Frank, J., and Luyben, K. C. (1996) Variation of the pH of the background electrolyte due to electrode reactions in capillary electrophoresis: theoretical approach and in situ measurement. Electrophoresis 17, 137–143.

    Article  PubMed  CAS  Google Scholar 

  30. Kebarle, P. and Tang, L. (1993) From ions in solution to ions in the gas phase-the mechanism of electrospray mass spectrometry. Anal. Chem. 65, 972A–86A.

    Article  CAS  Google Scholar 

  31. Van Berkel, G. J. (1997) The electrolytic nature of electrospray, in Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications (Cole, R. B., ed.), Wiley, New York, pp. 65–105.

    Google Scholar 

  32. Smith, A. D. and Moini, M. (2001) Control of electrochemical reactions at the capillary electrophoresis outlet/electrospray emitter electrode under CE-ESI MS through the application of redox buffers. Anal. Chem. 73, 240–246.

    Article  PubMed  CAS  Google Scholar 

  33. Bruinis, A. P. (1997) ESI source design and dynamic range considerations, in Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications (Cole, R.B., ed.), Wiley, New York, pp. 107–136.

    Google Scholar 

  34. Longfei, J. and Moini, M. (2000) Development of multi-ESI-sprayer, multi-atmospheric-pressure-inlet mass spectrometry and its application to accurate mass measurement using time-of-flight mass spectrometry. Anal. Chem. 72, 20–24, and 885.

    Article  Google Scholar 

  35. Bateman, K. P. (1999) Electrochemical properties of capillary electrophoresis-nanoelectrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 309–317.

    Article  CAS  Google Scholar 

  36. Chang, H. T. and Yeung, E. S. (1993) Oncolumn digestion of protein for peptide mapping by capillary zone electrophoresis with laser-induced native fluorescence detection. Anal. Chem. 65, 2947–2951.

    Article  CAS  Google Scholar 

  37. Moini, M. (2001) Design and performance of a universal sheathless capillary electrophoresis to mass spectrometry interface using a split-flow technique. Anal. Chem. 73, 3497–3501.

    Article  PubMed  CAS  Google Scholar 

  38. Moini, M., Cao, P., and Bard, A. J. (1999) Hydroquinone as a buffer additive for suppression of bubbles formed by electrochemical oxidation of the CE buffer at the outlet electrode in capillary electrophoresis/electrospray ionization-mass spectrometry. Anal. Chem. 71, 1658–1661.

    Article  PubMed  CAS  Google Scholar 

  39. Rindgen, D, Turesky, R. J., and Vouros, P. (1995) The application of CE/ESI/MS/ MS for detection of IQ adducts of DNA, in Proce. 43 th ASMS Conf. Mass Spectrometry and Allied Topics, p. 590.

    Google Scholar 

  40. Soga, T. and Heiger, D. N. (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 72, 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  41. Schultz, C. L. and Moini, M. (2003) The analysis of underivatized amino acids and their D/L enantiomers using sheathless CE-MS. Anal. Chem. 75, 1508–1513.

    Article  PubMed  CAS  Google Scholar 

  42. Moseley, M. A., Jorgenson, W. J., Shabanowitz, J., Hunt, D. F., and Tomer, K. B. (1992) Optimization of capillary zone electrophoresis/electrospray ionization parameters for the mass spectrometry and tandem mass spectrometry analysis of peptides. J. Am. Soc. Mass Spectrom. 3, 289–300.

    Article  CAS  Google Scholar 

  43. Teerlink, T. (1994) Derivatization of posttranslationally modified amino acids. J. Chromatogr. B659, 185–207.

    Google Scholar 

  44. Schegg, K. M., Denslow, N. D., Anderson, T. T., Bao, Y., Cohen, S. A., Mahrenholz, A. M., and Mann, K. (1997) Quantitation and identification of proteins by amino acid analysis: ABRF-96AAA collaborative trial, in Techniques in Protein Chemistry VIII (Marshak, D. R., ed.), Academic, San Diego, CA, pp. 207–216.

    Chapter  Google Scholar 

  45. Prata, C., Bonnafous, P., Fraysse, N, Treilhou, M., Poinsot, V., and Couderc, F. (2001) Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 22, 4129–4138.

    Article  PubMed  CAS  Google Scholar 

  46. Vecchione, G., Margaglione, G., Grandone, E., et al. (1999) Determining sulfur-containing amino acids by capillary electrophoresis. A fast novel method for total homocyste(e)ine human plasma. Electrophoresis 20, 569–574.

    Article  PubMed  CAS  Google Scholar 

  47. Nyhan, W. L. (1984) Abnormalities in Amino Acid Metabolism in Clinical Medicine. Appleton Century Crofts, East Norwalk, CT.

    Google Scholar 

  48. Soga, T. and Heiger, D. N. (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 72, 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  49. Marchelli, R., Dossena, A., and Palla, G. (1996) The potential of enantioselective analysis as a quality control tool. Trends in Food Sci. Tech. 7, 113–119.

    Article  CAS  Google Scholar 

  50. Zumwalt, R. W., Kuo, K. C., and Gehrke, C. W., eds. (1987) Amino Acid Analysis by Gas Chromatography (Vol I–III). CRC, Boca Raton, FL.

    Google Scholar 

  51. Deyl, Z., Hyanek. J., and Horikova, M. (1986) Profiling of amino acids in body fluids and tissues by means of liquid chromatography. J. Chromatogr. 379, 177–250.

    Article  PubMed  CAS  Google Scholar 

  52. Duncan, M. W. and Poljak, A. (1998) Amino Acid Analysis of Peptides and Proteins on the Femtomole Scale by Gas Chromatography/Mass Spectrometry. Anal. Chem. 70, 890–896.

    Article  CAS  Google Scholar 

  53. Kwon, J.-Y and Moini, M. (2001) Analysis of underivatized amino acid mixtures using high performance liquid chromatography/dual oscillating nebulizer atmospheric pressure microwave induced plasma ionization-mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 117–122.

    Article  PubMed  CAS  Google Scholar 

  54. He, T., Quinn, D., Fu, E., and Wang, Y. K. (1999) Analysis of diagnostic metabolites by capillary electrophoresis-mass spectrometry. J. Chromatogr. B727, 43–52.

    Google Scholar 

  55. Verleysen, K. and Sandra, P. (1998) Separation of chiral compounds by capillary electrophoresis. Electrophoresis 19, 2798–2833.

    Article  PubMed  CAS  Google Scholar 

  56. Kuhn, R., Stoecklin, F., and Erni, F. (1992) Chiral separations by host-guest complexation with cyclodexterin and crown ether in capillary zone electrophoresis. Chromatographia 33, 32–36.

    Article  CAS  Google Scholar 

  57. Verleysen, K., Bosch, T. V. and Sandra, P. (1999) Comparison of highly sulfated α-, β-, and γ-cyclodextrins and 18-crown-6-tetracarboxylic acid for the enantiomeric separation of some amino acids and derivatives by capillary electrophoresis. Electrophoresis 20, 2650–2655.

    Article  PubMed  CAS  Google Scholar 

  58. D’Aniello, A., Lee, J. M., Petrucelli, L., and Maddalena Di Fiore, M. (1998) Regional decreases of free D-aspartate levels in Alzheimer’s disease. Neurosci. Lett. 250, 131–134.

    Article  PubMed  Google Scholar 

  59. Schell, M. J., Cooper, O. B., and Snyder, S. H. (1997) D-Aspartate localizations imply neuronal and neuroendocrine roles. Proc. Natl. Acad. Sci. 94, 2013–2018.

    Article  PubMed  CAS  Google Scholar 

  60. Schell, M. J., Brady Jr., R. O., Molliver, M. E., and Snyder, S. H. (1997) D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J. Neurosci. 17, 1604–1615.

    PubMed  CAS  Google Scholar 

  61. Lubec, G. and Lubec, B (1993) Racemization rates of amino acids for dating ancient samples. Amino Acids 4, 1–3.

    Article  CAS  Google Scholar 

  62. Kyba, E. P., Timko, J. M., Kaplan, L. J., de Jong, F., Gokel, G. W., and Cram, D. J. (1978) Host-guest complexation. 11. Survey of chiral recognition of amine and amino ester salts by dilocular bisdinaphthyl hosts. J. Am. Chem. Soc. 100, 4555–4568.

    Article  CAS  Google Scholar 

  63. Sousa, L. S., Sogah, G. D. Y., Hoffman, D. H., and Cram, D. J. (1978) Host-guest complexation. 12. Total optical resolution of amine and amino ester salts by chromatography. J. Am. Chem. Soc. 100, 4569–4576.

    Article  CAS  Google Scholar 

  64. Behr, J. P., Girodeau, J. M., Heyward, R. C., Lehn, J. M., and Sauvage, J. P. (1980) Molecular receptors. Functionalized and chiral macrocyclic polyethers derived from tartaric acid. Helv. Chim. Acta. 63, 2096–2111.

    Article  CAS  Google Scholar 

  65. Behr, J. P., Lehn, J. M., and Vierling, P. (1982) Molecular receptors. Structural effects and substrate recognition in binding of organic and biogenic ammonium ions by chiral polyfunctional macrocyclic polyethers bearing amino acid and other side-chains. Helv. Chim. Acta. 65, 1853–1867.

    Article  CAS  Google Scholar 

  66. Banks, J. F. and Gulcicek, E. E. (1997) Rapid peptide mapping by reversed-phase liquid chromatography on nonporous silica with on-line electrospray time-of-flight mass spectrometry. Anal. Chem. 69, 3973–3978.

    Article  PubMed  CAS  Google Scholar 

  67. Wu, J., He, L., Li, M. X., Parus, S., and Lubman, D. M. (1997) Online capillary separations/tandem mass spectrometry for protein digest analysis by using an ion trap storage/reflectron time-of-flight mass detector. J. Am. Soc. Mass Spectrom. 8, 1237–1246.

    Article  CAS  Google Scholar 

  68. Roberts, G. D., Johnson, W. P., Burman, S., Anumula K. R., and Carr, S. A. (1995) An integrated strategy for structural characterization of the protein and carbohydrate components of monoclonal antibodies: application to anti-respiratory syncytial virus MAb. Anal. Chem. 67, 3613–3625.

    Article  PubMed  CAS  Google Scholar 

  69. Yates, J. R. 3rd, Speicher, S., Griffin, P. R., and Hunkapiller, T. (1993) Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214, 397–408.

    Article  PubMed  CAS  Google Scholar 

  70. Kitagishi, K. (1997) Comparison with other analytical methods, in Handbook of Capillary Electrophoresis Applications (Shintani, H. and Polonsky J., eds.), Chapman & Hall, New York, pp. 137–146.

    Google Scholar 

  71. Wahl, J. H., Udseth, H. R., and Smith, R. D. (1996) Capillary electrophoresis—mass spectrometry in peptide mapping, in New Methods in Peptide Mapping for the Characterization of Proteins (Hancock, W. S., ed.), CRC, Boca Raton, FL, pp. 143–179.

    Google Scholar 

  72. Banks, J. F. and Dresch, T. (1996) Detection of fast capillary electrophoresis peptide and protein separations using electrospray ionization with a time-of-flight mass spectrometer. Anal. Chem. 68, 1480–1485.

    Article  PubMed  CAS  Google Scholar 

  73. Jiang, L. and Moini, M. (1995) Design and performance of a high resolution electrospray ion source for a magnetic sector mass spectrometer with a heated capillary inlet. J. Am. Soc. Mass Spectrom. 6, 1256–1261.

    Article  CAS  Google Scholar 

  74. Moini, M. (1994) Ultramark 1621 as a calibration/reference compound for mass spectrometry. II. Positive-and negative-ion electrospray ionization. Rapid Commun. Mass Spectrom. 8, 711–714.

    Article  CAS  Google Scholar 

  75. Laude, D. A., Stevenson, E., and Robinson, J. M. (1997) Electrospray ionization/fourier transform ion cyclotron resonance mass spectrometry, in Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation and Applications (Cole, R.B., ed.), Wiley, New York, NY, pp. 291–319.

    Google Scholar 

  76. Chernushevich, I. V., Ens, W., and Standing, K. G. (1997) Electrospray ionization time-of-flight mass spectrometry, in Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation and Applications (Cole, R.B., ed.), Wiley, New York, NY, pp. 203–234.

    Google Scholar 

  77. Lazar, I. M., Xin, B., et al. (1997) Design of a time-of-flight mass spectrometer as a detector for capillary electrophoresis. Anal. Chem. 69, 3205–3211.

    Article  CAS  Google Scholar 

  78. Fang, L., Zhang, R., Williams, E. R., and Zare, R. N. (1994) Online time-of-flight mass spectrometric analysis of peptides separated by capillary electrophoresis. Anal. Chem. 66, 3696–3701.

    Article  CAS  Google Scholar 

  79. Muddiman, D. C., Rockwood, A. L., Gao, Q., Severs, J. C., Udseth, H. R., and Smith, R. D. (1995) Application of sequential paired covariance to capillary electrophoresis electrospray ionization time-of-flight mass spectrometry: Unraveling the signal from the noise in the electropherogram. Anal. Chem. 67, 4371–4375.

    Article  CAS  Google Scholar 

  80. Wu, J. T., Qian, M. M. G., Li, M. M. X., Liu, L., and Lubman, D. M. (1996) Use of an ion trap storage/reflectron time-of-flight mass spectrometer as a rapid and sensitive detector for capillary electrophoresis in protein digest analysis. Anal. Chem. 68, 3388–3396.

    Article  PubMed  CAS  Google Scholar 

  81. Yates, J. R., III, Zhou, J., Griffin, P. R., and Hood, L. E. (1990) Computer aided interpretation of low energy MS/MS mass spectra of peptides, in Techniques in Protein Chemistry II (Villafranca, J. J., ed.), Academic, New York, pp. 477–486.

    Google Scholar 

  82. Cao, P. and Moini, M. (1998) Capillary electrophoresis/electrospray ionization high mass accuracy time-of-flight mass spectrometry for protein identification using peptide mapping. Rapid. Commun. Mass Spectrom. 12, 864–870.

    Article  PubMed  CAS  Google Scholar 

  83. Mann, M. and Wilm, M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399.

    Article  PubMed  CAS  Google Scholar 

  84. Chong, B.E., Wall, D.B., Lubman, D.M., and Flynn, S.J. (1997) Rapid profiling of E. coli proteins up to 500 kDa from whole cell lysates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid. Commun. Mass Spectrom. 11, 1900–1908.

    Article  PubMed  CAS  Google Scholar 

  85. Arnold, R. J. and Reily, J. P. (1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal. Biochem. 269, 105–112.

    Article  PubMed  CAS  Google Scholar 

  86. Reid, G. E., Shang, H., Hogan, J. M., Lee, G. U., and McLuckey, S. A. (2002) Gas-phase concentration, purification, and identification of whole proteins from complex mixtures. J. Am. Chem. Soc. 124, 7353–7362.

    Article  PubMed  CAS  Google Scholar 

  87. Jensen, P. K., Pasa-Tolic, L., Anderson, G. A., et al. (1999) Probing proteomes using capillary isoelectric focusing-electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 71, 2076–2084.

    Article  PubMed  CAS  Google Scholar 

  88. Johnson, D. H., Naylor, S., Rhode, E., and Tomlinson, A. J. (1998) Comparison of protein mixtures in aqueous humor by membrane preconcentration-capillary electrophoresis-mass spectrometry. Electrophoresis 19, 2361–2370.

    Article  PubMed  Google Scholar 

  89. Cao, P. and Moini, M. (1998) Analysis of peptides, proteins, protein digests, and whole human blood by capillary electrophoresis/electrospray ionization-mass spectrometry using an in-capillary electrode sheathless interface. J. Am. Soc. Mass Spectrom. 9, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  90. Naylor, S. and Tomlinson, A. J. (2001) Capillary electrophoresis-mass spectrometry of biologically active peptides and proteins, in Clinical and Forensic Applications of Capillary Electrophoresis (Mohammad, A. A. and Peterson, J. R., eds.), Humana, Totowa, NJ, pp. 317–353.

    Chapter  Google Scholar 

  91. Cutalo, J. N., Deterding, L. J., Khaledi, M., and Tomer, K. B. (2002) Separation and characterization of human high-density apolipoproteins using a nonaqueous modifier in capillary electrophoresis-mass spectrometry. Electrophoresis 23, 2296–2305.

    Article  PubMed  Google Scholar 

  92. Moini, M., Demars, S. M., and Huang, H. (2002) Analysis of carbonic anhydrase in human red Blood cells using capillary electrophoresis/ electrospray ionization-mass spectrometry. Anal. Chem. 74, 3772–3776.

    Article  PubMed  CAS  Google Scholar 

  93. Valaskovic, G. A., Kelleher, N. L., and McLafferty, F. W. (1996) Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273, 1199–1202.

    Article  PubMed  CAS  Google Scholar 

  94. Andersson, B., Nyman, P. O., and Strid, L. (1972) Amino acid sequence of human erythrocyte carbonic anhydrase B. Biochem. Biophys. Res. Commun. 48, 670–677.

    Article  PubMed  CAS  Google Scholar 

  95. Terzakis, J. A. and Santegada, E. (2000) Measurement of erythrocytes on diagnostic slides by scanning electron microscopy. Anal. Quantitat. Cytol. Histol. 22, 244–246.

    CAS  Google Scholar 

  96. Henderson, L. E., Henriksson, D., and Nyman, P. O. (1973) Amino acid sequence of human erythrocyte carbonic anhydrase C. Biochem. Biophys. Res. Commun. 52, 1388–1394. For a more recent CAII amino acid sequence, see the NCBI database at http://www.ncbi.nlm.nih.gov.

    Article  PubMed  CAS  Google Scholar 

  97. Hutterer, K. M. and Jorgenson, J. W. (1999) Ultrahigh-voltage capillary zone electrophoresis. Anal. Chem. 71, 1293–1297.

    Article  CAS  Google Scholar 

  98. Smith, A. D. and Moini, M. (2000) Advances in capillary electrophoresis/electrospray ionization mass spectrometry achieved through the in-capillary electrode technique, in Proc. 48 th ASMS Conf. Mass Spectrom. Alli. Top., pp. 1119–1120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Moini, M. (2004). Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry of Amino Acids, Peptides, and Proteins. In: Strege, M.A., Lagu, A.L. (eds) Capillary Electrophoresis of Proteins and Peptides. Methods in Molecular Biology™, vol 276. Humana Press. https://doi.org/10.1385/1-59259-798-X:253

Download citation

  • DOI: https://doi.org/10.1385/1-59259-798-X:253

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-017-5

  • Online ISBN: 978-1-59259-798-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics