Parasite Genomics Protocols pp 173-185

Part of the Methods in Molecular Biology™ book series (MIMB, volume 270)

Amplified (Restriction) Fragment Length Polymorphism (AFLP) Analysis

  • Daniel K. Masiga
  • C. Michael R. Turner


The amplified (restriction) fragment length polymorphism (AFLP) technique is a method for DNA profiling that is now widely applied for assessing diversity among various organisms with varying genomic complexity, from small bacterial to large plant genomes. AFLP analysis combines the reliability of restriction enzyme digestion with the utility of the polymerase chain reaction. The technique can be applied to studies of DNA of any origin and complexity, without prior sequence knowledge. Therefore, it is very versatile and particularly valuable for organisms for which no substantive DNA sequence data are available. AFLP detects the presence of point mutations, insertions, deletions, and other genetic rearrangements. Typically, the fragments detected by AFLP are inherited in Mendelian fashion as co-dominant markers, making the technique amenable to tracking inheritance of genetic loci in progeny from crossed lines of organisms, and in studies of population genetics. This chapter describes the principles of AFLP and experimental procedures.

Key Words

AFLP co-dominant markers genotyping Mendelian PCR restriction enzymes 


  1. 1.
    Vos, P., Hogers, R., Bleeker, M., et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 11, 4407–4414.CrossRefGoogle Scholar
  2. 2.
    Lin, J. J., Kuo, J., and Ma, J. (1996) A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Res. 24,No. 18, 3649–3650.PubMedCrossRefGoogle Scholar
  3. 3.
    Janssen, P., Coopman, G., Huys, J., et al. (1996) Evaluation of the DNA fingerprinting method AFLP as a new tool for bacterial taxonomy. Microbiology 142, 191–194.CrossRefGoogle Scholar
  4. 4.
    Masiga, D. K., Tait, A., and Turner C. M. R. (2000) Amplified fragment length polymorphism in parasite genetics. Parasitol. Today 16, 350–353.PubMedCrossRefGoogle Scholar
  5. 5.
    Tait, A., Masiga, D., Ouma, J., et al. (2002) Genetic analysis of phenotype in Trypanosoma brucei: a classical approach to potentially complex traits. Phil. Trans. R. Soc. Lond. B: Biol. Sci. 357, 89–99.CrossRefGoogle Scholar
  6. 6.
    Grech, K., Martinelli, A., Pathirana, S., et al. (2002) Numerous, robust markers for Plasmodium chabaudi by the method of amplified fragment length polymorphism. Mol. Biochem. Parasitol. 123, 95–104.PubMedCrossRefGoogle Scholar
  7. 7.
    Shirley, M. W. and Harvey, D. A. (2000) A genetic linkage map of the apicomplexan parasite Eimeria tenella. Genome Res. 10, 1587–1593.PubMedCrossRefGoogle Scholar
  8. 8.
    Rubio, J. M., Berzosa, P. J., and Benito, A. (2001) Amplified fragment length polymorphism (AFLP) protocol for genotyping the malarial parasite Plasmodium falciparum. Parasitology 123, 331–336.PubMedCrossRefGoogle Scholar
  9. 9.
    Agbo, E. E. C., Majiwa, P. A. O., Claassen, H. J. H. M., et al. (2002) Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology 124, 349–358.PubMedCrossRefGoogle Scholar
  10. 10.
    Gibson, J. R., Slater, E., Xerry, J., et al. (1998) Use of an Amplified Fragment Length Polymorphism technique to fingerprint and differentiate isolates of Heliobacter pylori. J. Clin. Microbiol. 362, 2580–2585.Google Scholar
  11. 11.
    Ajmone-Marsan, P., Valentini, A., Cassandro, M., et al. (1997) AFLP markers for DNA fingerprinting in cattle. Anim. Genet. 28, 418–426.PubMedCrossRefGoogle Scholar
  12. 12.
    Koeleman, J. G., Stoof, J., Biesmans, D. J., et al. (1998) Comparison of amplified ribosomal DNA restriction analysis, random amplified polymorphic DNA analysis, and amplified fragment length polymorphism fingerprinting for identification of Acinetobacter genomic species and typing of Acinetobacter baumannii. J. Clin. Microbiol. 36, 2522–2529PubMedGoogle Scholar
  13. 13.
    Folkertsma, R. T., Rouppe van der Voort, J. N., de Groot, K. E., et al. (1996) Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Mol. Plant-Microbe Interact. 9, 47–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Mueller, U. G. and Wolfenbarger, L. L. (1999) AFLP genotyping and fingerprinting. TREE 10, 389–394.Google Scholar
  15. 15.
    Blears, M. J., De Grandis, S. A., Lee, H., et al. (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 21, 99–114.CrossRefGoogle Scholar
  16. 16.
    Savelkoul, P. H. M., Aarts, H. J. M., Haas, De J., et al. (1999). Amplified Fragment Length Polymorphism Analysis: the state of the art. J. Clin. Microbiol. 37, 3083–3091.PubMedGoogle Scholar
  17. 17.
    Liu, Z., Nichols, A., Li, P., et al. (1998) Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue fish (I. furcatus), and their F1, F2 and backcross hybrids. Mol. Gen. Genet. 258, 260–268.PubMedCrossRefGoogle Scholar
  18. 18. (database of trypanosomatid genomes, including Leishmania major, Trypanosoma brucei, and T. cruzi). Accessed 1-27-2004.
  19. 19. (Web-accessible resource for the Plasmodium falciparum genome sequence). Accessed 1-27-2004.
  20. 20.
    Lanham, S. and Godfrey, D. G. (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp. Parasitol. 28, 521–534.PubMedCrossRefGoogle Scholar
  21. 21.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  22. 22.
    Liscum, M. and Oeller, P. AFLP: not only for fingerprinting, but for positional cloning. Accessed 1-27-2004.

Copyright information

© Humana Press Inc., Totowa,NJ 2004

Authors and Affiliations

  • Daniel K. Masiga
    • 1
  • C. Michael R. Turner
    • 2
  1. 1.Molecular Biology and Biotechnology UnitInternational Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
  2. 2.Division of Infection and Immunity, Institute of Biomedical and Life Sciences (IBLS)Glasgow UniversityGlasgowUK

Personalised recommendations