Skip to main content

Generation and Analysis of Brca1 Conditional Knockout Mice

  • Protocol
Book cover Checkpoint Controls and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 280))

Abstract

Germline mutations of the breast tumor suppressor gene BRCA1 predispose women to breast and ovarian cancers. However, loss-of-function mutations of mouse Brca1 results in recessive embryonic lethality, which obscures the functions of BRCA1 in breast cancer formation. Cre-loxP-mediated tissue-specific knockout was employed to overcome this obstacle. We found that the presence of a ploxP-neo-loxP cassette in intron 10 of Brca1 resulted in severe interference with gene expression. The neo cassette was deleted in either embryonic stem cells or mice to generate the neo-less conditional knockout allele. Finally, we performed functional analysis of mammary tumorigenesis in Brca1 conditional knockout mice. The methods to generate and analyze these Brca1 conditional knockout mice are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberg, A. J. and Helzlsouer, K. J. (1997) Epidemiology, prevention, and early detection of breast cancer. Curr. Opin. Oncol. 9, 505–511.

    Article  PubMed  CAS  Google Scholar 

  2. Hill, A. D., Doyle, J. M., McDermott, E. W., and O’Higgins, N. J. (1997) Hereditary breast cancer. Br. J. Surg. 84, 1334–1339.

    Article  PubMed  CAS  Google Scholar 

  3. Brody, L. C. and Biesecker, B. B. (1998) Breast cancer susceptibility genes. BRCA1 and BRCA2. Medicine (Baltimore) 77, 208–226.

    Article  CAS  Google Scholar 

  4. Paterson, J. W. (1998) BRCA1: a review of structure and putative functions. Dis. Markers 13, 261–274.

    PubMed  CAS  Google Scholar 

  5. Lane, T. F., Deng, C., Elson, A., Lyu, M. S., Kozak, C. A., and Leder, P. (1995) Expression of Brca1 is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes Dev. 9, 2712–2722.

    Article  PubMed  CAS  Google Scholar 

  6. Miki, Y., Swensen, J., Shattuck-Eidens, D., et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, X., Weaver, Z., Linke, S. P., et al. (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395.

    Article  PubMed  CAS  Google Scholar 

  8. Deng, C. X. and Brodie, S. G. (2000) Roles of BRCA1 and its interacting proteins. Bioessays 22, 728–737.

    Article  PubMed  CAS  Google Scholar 

  9. Deng, C. X. (2002) Tumor formation in Brca1 conditional mutant mice. Environ. Mol. Mutagen. 39, 171–177.

    Article  PubMed  CAS  Google Scholar 

  10. Xu, X., Wagner, K. U., Larson, D., et al. (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 22, 37–43.

    Article  PubMed  CAS  Google Scholar 

  11. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A., and Leder, P. (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921.

    Article  PubMed  CAS  Google Scholar 

  12. Yang, X., Li, C., Xu, X., and Deng, C. (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc. Natl. Acad. Sci. USA 95, 3667–3672.

    Article  PubMed  CAS  Google Scholar 

  13. Lakso, M., Pichel, J. G., Gorman, J. R., et al. (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865.

    Article  PubMed  CAS  Google Scholar 

  14. Wagner, K. U., Wall, R. J., St-Onge, L., et al. (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330.

    Article  PubMed  CAS  Google Scholar 

  15. Xu, X., Li, C., Garrett-Beal, L., Larson, D., Wynshaw-Boris, A., and Deng, C. X. (2001) Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches. Genesis 30, 1–6.

    Article  PubMed  Google Scholar 

  16. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.

    Article  PubMed  CAS  Google Scholar 

  17. Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109.

    Article  PubMed  CAS  Google Scholar 

  18. Hirotsune, S., Fleck, M. W., Gambello, M. J., et al. (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339.

    Article  PubMed  CAS  Google Scholar 

  19. Nagy, A., Moens, C., Ivanyi, E., et al. (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol. 8, 661–664.

    Article  PubMed  CAS  Google Scholar 

  20. Partanen, J., Schwartz, L., and Rossant, J. (1998) Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev. 12, 2332–2344.

    Article  PubMed  CAS  Google Scholar 

  21. Rucker, E. B., 3rd, Dierisseau, P., Wagner, K. U., et al. (2000) Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol. Endocrinol. 14, 1038–1052.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, L., Adar, R., Yang, X., Monsonego, E. O., Li, C., Hauschka, P. V., et al. (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J. Clin. Invest. 104, 1517–1525.

    Article  PubMed  CAS  Google Scholar 

  23. Li, C., Chen, L., Iwata, T., Kitagawa, M., Fu, X. Y., and Deng, C. X. (1999) A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum. Mol. Genet. 8, 35–44.

    Article  PubMed  CAS  Google Scholar 

  24. Shen, S. X., Weaver, Z., Xu, X., et al. (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17, 3115–3124.

    Article  PubMed  CAS  Google Scholar 

  25. Brodie, S. G., Xu, X., Qiao, W., Li, W. M., Cao, L., and Deng, C. X. (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514–7523.

    Article  PubMed  CAS  Google Scholar 

  26. Weaver, Z., Montagna, C., Xu, X., et al. (2002) Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097–5107.

    Article  PubMed  CAS  Google Scholar 

  27. Liyanage, M., Coleman, A., du Manoir, S., et al. (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat. Genet. 14, 312–315.

    Article  PubMed  CAS  Google Scholar 

  28. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Article  PubMed  CAS  Google Scholar 

  29. Meye, A., Wurl, P., Bache, M., et al. (2000) Colony formation of soft tissue sarcoma cells is inhibited by lipid-mediated antisense oligodeoxynucleotides targeting the human mdm2 oncogene. Cancer Lett. 149, 181–188.

    Article  PubMed  CAS  Google Scholar 

  30. Kaartinen, V. and Nagy, A. (2001) Removal of the floxed neo gene from a conditional knockout allele by the adenoviral Cre recombinase in vivo. Genesis 31, 126–129.

    Article  PubMed  CAS  Google Scholar 

  31. Wagner, K. U., McAllister, K., Ward, T., Davis, B., Wiseman, R., and Hennighausen, L. (2001) Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res. 10, 545–553.

    Article  PubMed  CAS  Google Scholar 

  32. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T., and Mulligan, R. C. (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Deng, CX., Xu, X. (2004). Generation and Analysis of Brca1 Conditional Knockout Mice. In: Schönthal, A.H. (eds) Checkpoint Controls and Cancer. Methods in Molecular Biology™, vol 280. Humana Press. https://doi.org/10.1385/1-59259-788-2:185

Download citation

  • DOI: https://doi.org/10.1385/1-59259-788-2:185

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-214-8

  • Online ISBN: 978-1-59259-788-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics