Skip to main content

GFP Fusion Proteins to Study Signaling in Live Cells

  • Protocol
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 273))

Abstract

In just a few years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has jumped from relative obscurity to become one of the most widely studied and exploited proteins in cell biology. Discovered by Shimomura et al. (1), GFP acts as a fluorophore and native companion to the famous chemiluminescent protein aequorin (2), also from Aequorea. GFP absorbs blue light emitted by aequorin and re-emits photons at a longer wavelength, thus accounting for the green glow of the intact jellyfish (3). In research terms, the crucial breakthroughs came with the cloning of the gene (4) and the demonstration that expression of the gene in other organisms creates green fluorescence (5,6). This is possible because the gene alone contains all the information necessary for the post-translational synthesis of the chromophore, and no jellyfish-specific enzymes are required. These properties have made GFP a powerful and versatile tool for investigating virtually all fields of cell biology, including the study of membrane traffic and dynamics, organelle structure, and gene expression. By using both homologous and heterologous systems, and with the development of methods to culture megakaryocytes in vitro (see Chapters 22, 23, and 27, vol. 1), it is likely that the use of GFP will make a significant contributibution to our understanding of megakaryocyte and platelet signaling. In this chapter we discuss aspects of using GFP in the imaging of protein dynamics in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura, O., Johnson, F. H., and Saiga, Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. J. Cell. Comp. Physiol. 59, 223–239.

    Article  PubMed  CAS  Google Scholar 

  2. Blinks, J. R., Mattingly, P. H., Jewell, B. R., van Leewen, M., Marrer, G. C., and Allen, D. (1978) Practical aspects of the use of aequorin as a calcium indicator: Assay, preparation, microinjection, and interpretation of signals. Methods Enzymol. 57, 292–328.

    Article  CAS  Google Scholar 

  3. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  4. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.

    Article  PubMed  CAS  Google Scholar 

  5. Chalfie, M., Tu, Y., Euskierchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  6. Inouye, S. and Tsuji, F. I. (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341, 277–280.

    Article  PubMed  CAS  Google Scholar 

  7. Morise, H., Shimomura, O., Johnson, F. H., and Winant, J. (1974) Intermolecular energy transfer in the bioluminecent system of Aequorea. Biochemistry 13, 2656–2662.

    Article  PubMed  CAS  Google Scholar 

  8. Perozzo, M. A., Ward, K. B., Thompson, R. B., and Ward, W. W. (1988) X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J. Biol. Chem. 263, 7713–7716.

    PubMed  CAS  Google Scholar 

  9. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remmington, S. J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, F., Moss, L. G., and Phillips, G. N., Jr. (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips, G. N., Jr. (1997) Structure and dynamics of green fluorescent protein. Curr. Opin. Struct. Biol. 7, 821–827.

    Article  PubMed  CAS  Google Scholar 

  12. Cody, C. W., Prasher, D. C., Westler, W. M., Prendergast, F. G., and Ward, W. W. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  13. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and post-translational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  PubMed  CAS  Google Scholar 

  14. Heim, R., Cubbit, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663–664.

    Article  PubMed  CAS  Google Scholar 

  15. Zolotukhin, S., Potter, S. M., Hauswirth, W. W., Guy, J., and Muzyczka, N. (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654.

    PubMed  CAS  Google Scholar 

  16. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790.

    Article  PubMed  CAS  Google Scholar 

  17. Ward, W. W. (1997) Biochemical and physical properties of green fluorescent protein, in Green Fluorescent Protein: Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds.), John Wiley and Sons, New York, pp. 45–75.

    Google Scholar 

  18. Rutter, G. A., Kennedy, H. J., Wood, C. D., White, M. R. H., and Tavare, J. M. (1998) Quantitative real-time imaging of gene expression in single cells using multiple luciferase reporters. Chem. Biol. 5, R2850–R290.

    Article  Google Scholar 

  19. Delgrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan, D. C. (1995) Red-shifted excitation mutants of the green fluorescent protein. Biol. Technol. 13, 151–154.

    Google Scholar 

  20. Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., et al. (1999) Fluorescent proteins from non-bioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973.

    Article  CAS  Google Scholar 

  21. Cotlet, M., Hofkens, J., Habuchi, S., Dirix, G., Van Guyse, M., Michiels, J., et al. (2001) Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proc. Natl. Acad. Sci. USA 98, 14,398–14,403.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Parajo, M. F., Koopman, M., van Dijk, E. M. H. P., Subramaniam, V., and van Hulst, N. F. (2001) The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection. Proc. Natl. Acad. Sci. USA 98, 14,392–14,397.

    Article  PubMed  CAS  Google Scholar 

  23. Terskikh, A. V., Fradkov, A. F., Zaraisky, A. G., Kajava, A. V., and Angres, B. (2002) Analysis of DsRed Mutants. Space around the fluorophore accelerates fluorescence development. J. Biol. Chem. 277, 7633–7636.

    Article  PubMed  CAS  Google Scholar 

  24. Gurskaya, N. G., Fradkov, A. F., Terskikh, A., Matz, M. V., Labas, Y A., Martynov, V.I., et al. (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507, 16–20.

    Article  PubMed  CAS  Google Scholar 

  25. Bobe, R., Wilde, J. I., Maschberger, P., Wenkateswarlu, K., Cullen, P. J., Siess, W., et al. (2001) Phosphatidylinositol 3-kinase-dependent translocation of phospholipase Cγ2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood 97, 678–684.

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Vol. 1, 2, 3.

    Google Scholar 

  27. Wilson, L., Sullivan, K. F., and Matsudaira, P., eds. (1998) Methods in Cell Biology: Green Fluorescent Proteins, Academic Press, New York.

    Google Scholar 

  28. Reichelt, S. and Amos, W. B. (2001) SELS: a new method for laser scanning microscopy of live cells. Microscopy and Analysis 86, 9–11.

    Google Scholar 

  29. http://www.clontech.com.

  30. Tavaré, J. M., Fletcher, L. M., and Welsh, G. I. (2001) Review: Using green fluorescent protein to study intracellular signaling. J. Endocrinol. 170, 297–306.

    Article  PubMed  Google Scholar 

  31. Kraulis, P. J. (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Walker, S.A., Cozier, G.E., Cullen, P.J. (2004). GFP Fusion Proteins to Study Signaling in Live Cells. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology™, vol 273. Humana Press. https://doi.org/10.1385/1-59259-783-1:407

Download citation

  • DOI: https://doi.org/10.1385/1-59259-783-1:407

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-011-3

  • Online ISBN: 978-1-59259-783-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics