Advertisement

In Vivo Models of Platelet Function and Thrombosis

Study of Real-Time Thrombus Formation
  • Shahrokh Falati
  • Peter L. Gross
  • Glenn Merrill-Skoloff
  • Derek Sim
  • Robert Flaumenhaft
  • Alessandro Celi
  • Barbara C. Furie
  • Bruce Furie
Part of the Methods In Molecular Biology™ book series (MIMB, volume 272)

Abstract

Our understanding of hemorrhagic and thrombotic diseases has expanded with use of models aimed at studying the vasculature using a variety of different animals. Unlike in vitro experiments, these animal models enable the study of the broad continuum of biological consequences induced by alterations made to a single variable. This chapter briefly reviews animal models used in the study of thrombosis research, focusing primarily on the use of intravital fluorescence microscopy.

Keywords

Silk Suture Rose Bengal Intravital Microscopy Cremaster Muscle Electrical Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Thackrah, C. T. (1820) An inquiry into the nature and properties of the blood, as existent in health and disease. N. Engl. J Med. Surg. 9, 186–193.Google Scholar
  2. 2.
    Donne, M. A. (1842) De Forgine des globules du sang, de leur mode de formation et de leur fin. C. R. Acad. Sci. (Paris) 14, 366–368.Google Scholar
  3. 3.
    Virchow, R. (1856) Uber die Verstopfung der Lungenarterie. Gesammelte Abhandlungen zur wissenschaftlichen Medicin, Frankfort, Meidinger Sohn, p. 221.Google Scholar
  4. 4.
    Gross, P. L. and Aird, W. C. (2000) The endothelium and thrombosis. Sem. Thromb. Hem. 26, 463–478.CrossRefGoogle Scholar
  5. 5.
    Rosenblum, W. I. and El-Sabban, F. (1977) Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents. Circ. Res. 40, 320–328.PubMedGoogle Scholar
  6. 6.
    Gallagher, K. P., Osakada, G., Kemper, W. S., and Ross., J. (1985) Cyclical coronary flow reductions in conscious dogs equipped with ameroid constrictors to produce severe coronary narrowing. Basic Res. Cardiol. 80, 100–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Stockmans, F., Deckmyn, H., Gruwez, J., Vermylen, J., and Acland, R. (1991) Continuous quantitative monitoring of mural, platelet dependent, thrombus kinetics in the crushed rat femoral vein. Thromb. Haemost. 65, 425–431.PubMedGoogle Scholar
  8. 8.
    Aoki, T., Cox, D., Senzaki, K., Seki, J., Tanaka., A., Takasugi, H., et al. (1998) Comparison of the antithrombotic effects of FK633, GPIlb-IIla antagonist, and aspirin in a guinea pig thrombosis model. Thromb. Res. 89, 129–136.PubMedCrossRefGoogle Scholar
  9. 9.
    Kurz, K. D., Main, B. W., and Sandusky, G. E. (1990) Rat model of arterial thrombosis induced by ferric chloride. Thromb. Res. 60, 269–280.PubMedCrossRefGoogle Scholar
  10. 10.
    Fay, W. P., Parker, A. C., Ansari, M. N., Zheng, X., and Ginsburg, D. (1999) Vitronectin inhibits the thrombotic response to arterial injury in mice. Blood 93, 1825–1830.PubMedGoogle Scholar
  11. 11.
    Rosen, E. D., Raymond, S., Zollman, A., Noria, F., Sandoval-Cooper, M., Shulman, A., et al. (2001) Laser-induced noninvasive vascular injury models in mice generate platelet-and coagulation-dependent thrombi. Am. J. Pathol. 158, 1613–1622.PubMedCrossRefGoogle Scholar
  12. 12.
    Falati, S., Gross, P., Merrill-Skoloff, G., Furie, B. C., and Furie, B. (2002) Real-time imaging of the assembly of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 8, 1175–1181.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Shahrokh Falati
    • 1
  • Peter L. Gross
    • 1
  • Glenn Merrill-Skoloff
    • 1
  • Derek Sim
    • 1
  • Robert Flaumenhaft
    • 1
  • Alessandro Celi
    • 1
  • Barbara C. Furie
    • 1
  • Bruce Furie
    • 1
  1. 1.Center for Hemostasis & Thrombosis ResearchBeth Israel Deaconess Medical Center and Harvard Medical SchoolBoston

Personalised recommendations