Skip to main content

DNA Methylation Analysis in Human Cancer

  • Protocol
Pancreatic Cancer

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 103))

  • 828 Accesses

Abstract

Many tumor suppressor genes (such as p16, Rb, VHL, E-cadherin, and hMLH1) that are silenced by mutation are also inactivated by gene silencing through DNA methylation. Characterization of genes hypermethylated in human cancers but not in normal tissues not only provides insights into cancer biology but also permits the use of methylation-specific polymerase chain reaction-based assays that could serve as diagnostic tests for the early detection and early diagnosis of this disease. To this end, research aimed at the identification and characterization of the methylation status of known and candidate tumor suppressor genes is one strategy for finding putative diagnostic markers. This chapter describes several methods of methylation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird, A. (1992) The essentials of DNA methylation. Cell 70, 5–8.

    Article  PubMed  CAS  Google Scholar 

  2. Bird, A. (1999) DNA methylation de novo. Science 286, 2287–2278.

    Article  PubMed  CAS  Google Scholar 

  3. Mohandas, T., Sparkes, R. S., and Shapiro, L. J. (1981) Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation. Science 211, 393–396.

    Article  PubMed  CAS  Google Scholar 

  4. Okano, M., et al. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  5. Okano, M., Xie, S., and Li, E. (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19, 219–220.

    Article  PubMed  CAS  Google Scholar 

  6. Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340.

    Article  PubMed  CAS  Google Scholar 

  7. Baylin, S. B., et al. (1998) Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.

    Article  PubMed  CAS  Google Scholar 

  8. Herman, J. G., et al. (1996) Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  9. Herman, J. G., et al. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 95, 6870–6875.

    Article  PubMed  CAS  Google Scholar 

  10. Rountree, M. R., et al. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20, 3156–3165.

    Article  PubMed  CAS  Google Scholar 

  11. Ueki, T., et al. (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 60, 1835–1839.

    PubMed  CAS  Google Scholar 

  12. Gama-Sosa, M. A., et al. (1983) The 5-methylcytosine content of DNA from human tumors. Nucl. Acids Res. 11, 6883–6894.

    Article  PubMed  CAS  Google Scholar 

  13. Feinberg, A. P., et al. (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48, 1159–1161.

    PubMed  CAS  Google Scholar 

  14. Piyathilake, C. J., et al. (2001) Altered global methylation of DNA: An epigenetic difference in susceptibility for lung cancer is associated with its progression. Hum. Pathol. 32, 856–862.

    Article  PubMed  CAS  Google Scholar 

  15. Gitan, R. S., et al. (2002) Methylation-specific oligonucleotide microarray: A new potential for high-throughput methylation analysis. Genome Res. 12, 158–164.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki, H., et al. (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet. 31, 141–149.

    Article  PubMed  CAS  Google Scholar 

  17. Yamashita, K., et al. (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell. 2, 485–495.

    Article  PubMed  CAS  Google Scholar 

  18. Sato, N., et al. (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 63, 3735–2742.

    PubMed  CAS  Google Scholar 

  19. Costello, J. F., Plass, C., and Cavenee, W. K. (2002) Restriction landmark genome scanning. Methods Mol. Biol. 200, 53–70.

    PubMed  CAS  Google Scholar 

  20. Costello, J. F., Smiraglia, D. J., and Plass, C. (2002) Restriction landmark genome scanning. Methods 27, 144–149.

    Article  PubMed  CAS  Google Scholar 

  21. Frommer, M., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  22. Reynaud, C., et al. (1992) Monitoring of urinary excretion of modified nucleo-sides in cancer patients using a set of six monoclonal antibodies. Cancer Lett. 61, 255–262.

    Article  PubMed  CAS  Google Scholar 

  23. Xiong, Z. and Laird, P. W. (1997) COBRA: A sensitive and quantitative DNA methy-lation assay. Nucl. Acids Res. 25, 2532–2534.

    Article  PubMed  CAS  Google Scholar 

  24. Gehrke, C. W., et al. (1984) Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. J. Chromatogr. 301, 199–219.

    Article  PubMed  CAS  Google Scholar 

  25. Lisitsyn, N. and Wigler, M. (1993) Cloning the differences between two complex genomes. Science 259, 946–951.

    Article  PubMed  CAS  Google Scholar 

  26. Schutte, M., et al. (1995) Identification by representational difference analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region. Proc. Natl. Acad. Sci. USA 92, 5950–5954.

    Article  PubMed  CAS  Google Scholar 

  27. Grunau, C., Clark, S. J., and Rosenthal, A. (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucl. Acids Res. 29, E65–E65.

    Article  PubMed  CAS  Google Scholar 

  28. Baskaran, N., et al. (1996) Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 6, 633–638.

    Article  PubMed  CAS  Google Scholar 

  29. Toyota, M., et al. (1999) CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA 96, 8681–8686.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Curtis, C.D., Goggins, M. (2005). DNA Methylation Analysis in Human Cancer. In: Su, G.H. (eds) Pancreatic Cancer. Methods in Molecular Medicine™, vol 103. Humana Press. https://doi.org/10.1385/1-59259-780-7:123

Download citation

  • DOI: https://doi.org/10.1385/1-59259-780-7:123

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-107-3

  • Online ISBN: 978-1-59259-780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics