Advertisement

RNA Interference

Historical Overview and Significance
  • Mary K. Montgomery
Part of the Methods in Molecular Biology book series (MIMB, volume 265)

Abstract

In the early 1990s, attempts to manipulate gene expression by researchers working in three different fields resulted in unanticipated gene silencing. Rather than ignoring such results, these researchers went on to document and further investigate the nature of such silencing, which was named “co-suppression” in plants, “quelling” in fungi, and “RNA interference” (RNAi) in nematodes. By the late 1990s, it was discovered that silencing could be initiated in this diverse set of organisms by exposing cells to double-stranded RNA (dsRNA), which directed the destruction of mRNAs containing similar sequences. Soon afterward, such dsRNA-mediated silencing was employed as a reverse genetic technique to analyze the functions of specific genes in a broad variety of organisms. Biochemical and genetic studies designed to uncover the components of the RNA silencing machinery identified a common core of proteins that serve to amplify the interfering RNA signal and direct endonucleolytic cleavage of target RNAs. A subset of silencing events may also direct DNA methylation of targeted genes. RNA silencing is thought to have evolved as a defense mechanism to suppress viral replication and transposon mobilization. However, additional functions involving the RNAi machinery have been uncovered, including posttranscriptional regulation of endogenous genes, and maintenance of structure and function of heterochromatin. Whereas many researchers have focused on understanding the natural biological functions of RNA silencing, others are testing its utility in antiviral and cancer therapies and in other biotechnological and biomedical applications.

Key Words

RNA silencing RNA interference cosuppression quelling posttranscriptional gene silencing antisense RNA double-stranded RNA dicer RNA-induced silencing complex RNA-directed RNA polymerase 

References

  1. 1.
    Kohler, R. (1994) Lords of the Fly: Drosophila Genetics and the Experimental Life. University of Chicago Press, Chicago.Google Scholar
  2. 2.
    Izant, J. G. and Weintraub, H. (1984) Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36, 1007–1015.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenberg, U. B., Preiss, A., Seifert, E., Jackle, H., and Knipple, D. C. (1985) Production of phenocopies by Kruppel antisense RNA injection into Drosophila embryos. Nature 313, 703–704.PubMedCrossRefGoogle Scholar
  4. 4.
    Harland, R. and Weintraub, H. (1985) Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J. Cell Biol. 101, 1094–1099.PubMedCrossRefGoogle Scholar
  5. 5.
    Melton, D. A. (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. USA 82, 144–148.PubMedCrossRefGoogle Scholar
  6. 6.
    Fire, A., Albertson, D., Harrison, S. W., and Moerman, D. G. (1991) Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514.PubMedGoogle Scholar
  7. 7.
    Guo, S. and Kemphues, K. J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocheleau, C. E., Downs, W. D., Lin, R., Wittmann, C., Bei, Y., Cha, Y. H., Ali, M., Priess, J. R., and Mello, C. C. (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716.PubMedCrossRefGoogle Scholar
  9. 9.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  10. 10.
    Montgomery, M. K., Xu, S., and Fire, A. (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15,502–15,507.PubMedCrossRefGoogle Scholar
  11. 11.
    Simpson, V. J., Johnson, T. E., and Hammen, R. F. (1986) C. elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucl. Acids Res. 14, 6711–6717.PubMedCrossRefGoogle Scholar
  12. 12.
    Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.PubMedCrossRefGoogle Scholar
  13. 13.
    Romano, N. and Macino, G. (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353.PubMedCrossRefGoogle Scholar
  14. 14.
    Cogoni, C., Irelan, J. T., Schumacher, M., Schmidhauser, T. J., Selker, E. U., and Macino, G. (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 15, 3153–3163.PubMedGoogle Scholar
  15. 15.
    Matzke, M. A. and Matzke, A. (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107, 679–685.PubMedGoogle Scholar
  16. 16.
    Montgomery, M. K. and Fire, A. (1998) Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14, 255–258.PubMedCrossRefGoogle Scholar
  17. 17.
    Waterhouse, P. M., Graham, M. W., and Wang, M. B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13,959–13,964.PubMedCrossRefGoogle Scholar
  18. 18.
    Jorgensen, R. A., Que, Q., and Stam, M. (1999) Do unintended antisense transcripts contribute to sense cosuppression in plants? Trends Genet. 15, 11, 12.PubMedCrossRefGoogle Scholar
  19. 19.
    Williams, B. R. (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120.PubMedCrossRefGoogle Scholar
  20. 20.
    Wianny, F. and Zernicka-Goetz, M. (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Oates, A. C., Bruce, A. E., and Ho, R. K. (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol. 224, 20–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Morel, J. B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., and Vaucheret, H. (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639.PubMedCrossRefGoogle Scholar
  23. 23.
    Marathe, R., Anandalakshmi, R., Smith, T. H., Pruss, G. J., and Vance, V. B. (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol. Biol. 43, 295–306.PubMedCrossRefGoogle Scholar
  24. 24.
    Hutvagner, G. and Zamore, P. D. (2002) RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232.PubMedCrossRefGoogle Scholar
  25. 25.
    Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.PubMedCrossRefGoogle Scholar
  26. 26.
    Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.PubMedCrossRefGoogle Scholar
  27. 27.
    Zamore, P., Tuschl, T., Sharp, P., and Bartel, D. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H., and Fire, A. (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476.PubMedCrossRefGoogle Scholar
  29. 29.
    Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T., and Plasterk, R. H. (2002) RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 295, 694–697.PubMedCrossRefGoogle Scholar
  30. 30.
    Lipardi, C., Wei, Q., and Paterson, B. M. (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107, 297–307.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwarz, D. S., Hutvagner, G., Haley, B., and Zamore, P. D. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548.PubMedCrossRefGoogle Scholar
  32. 32.
    Stein, P., Svoboda, P., Anger, M., and Schultz, R. M. (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9, 187–192.PubMedCrossRefGoogle Scholar
  33. 33.
    Roignant, J.-Y., Carre, C., Mugat, B., Szymczak, D., Lepesant, J.-A., and Antoinewski, C. (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308.PubMedCrossRefGoogle Scholar
  34. 34.
    Cogoni, C. and Macino, G. (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci. USA 94, 10,233–10,238.PubMedCrossRefGoogle Scholar
  35. 35.
    Doench, J. G., Petersen C. P., and Sharp, P. A. (2003) siRNAs can function as miRNAs. Genes Dev. 17, 438–442.PubMedCrossRefGoogle Scholar
  36. 36.
    Wassenegger, M. (2000) RNA-directed DNA methylation. Plant Mol. Biol. 43, 203–220.PubMedCrossRefGoogle Scholar
  37. 37.
    Matzke, M. A., Matzke, A. J. M., Pruss, G., and Vance, V. B. (2001) RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev. 11, 221–227.PubMedCrossRefGoogle Scholar
  38. 38.
    Zilberman, D., Cao, X., and Jacobsen, S. E. (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719.PubMedCrossRefGoogle Scholar
  39. 39.
    Tang, G., Reinhart, B. J., Bartel, D. P., and Zamore, P. D. (2003) A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I., and Martienssen, R. A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837.PubMedCrossRefGoogle Scholar
  41. 41.
    Hall, I. M., Noma, K., and Grewal, S. I. S. (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA 100, 193–198.PubMedCrossRefGoogle Scholar
  42. 42.
    Mochizuki, K., Fine, N. A., Fujisawa, T., and Gorovsky, M. A. (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689–699.PubMedCrossRefGoogle Scholar
  43. 43.
    Kamath, R. S., Fraser, A. G., Dong, Y., et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237.PubMedCrossRefGoogle Scholar
  44. 44.
    Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J., and Ruvkun, G. (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272.PubMedCrossRefGoogle Scholar
  45. 45.
    Frankish, H. (2003) Consortium uses RNAi to uncover genes’ function. Lancet 361, 584.PubMedCrossRefGoogle Scholar
  46. 46.
    Williams, N. S., Gaynor, R. B., Scoggin, S., Verma, U., Gokaslan, T., Simmang, C., Fleming, J., Tavana, D., Frenkel, E., and Becerra, C. (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin. Cancer Res. 9, 931–946.PubMedGoogle Scholar
  47. 47.
    {mnSanchez Alvarado}, A. and Newmark, P.A. (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. USA 96, 5049–5054.Google Scholar
  48. 48.
    Lohmann, J. U., Endl, I., and Bosch, T. C. (1999) Silencing of developmental genes in Hydra. Dev. Biol. 214, 211–214.PubMedCrossRefGoogle Scholar
  49. 49.
    Baker, M. W. and Macagno, E. R. (2000) RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr. Biol. 10, 1071–1074.PubMedCrossRefGoogle Scholar
  50. 50.
    Nakano, H., Amemiya, S., Shiokawa, K., and Taira, M. (2000) RNA interference for the organizer-specific gene Xlim-1 in Xenopus embryos. Biochem. Biophys. Res. Commun. 274, 434–439.PubMedCrossRefGoogle Scholar
  51. 51.
    Brown, S. J., Mahaffey, J. P., Lorenzen, M. D., Denell, R. E., and Mahaffey, J. W. (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol. Dev. 1, 11–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Hughes, C. L. and Kaufman, T. C. (2000) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127, 3683–3694.PubMedGoogle Scholar
  53. 53.
    Schroder, R. (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422, 621–625.PubMedCrossRefGoogle Scholar
  54. 54.
    Haag, E. S. and Kimble, J. (2000) Regulatory elements required for development of Caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics 155, 105–116.PubMedGoogle Scholar
  55. 55.
    Rudel, D. and Kimble, J. (2001) Conservation of glp-1 regulation and function in nematodes. Genetics 157, 639–654.PubMedGoogle Scholar
  56. 56.
    Louvet-Vallee, S., Kolotuev, I., Podbilewicz, B., and Felix, M. A. (2003) Control of vulval competence and centering in the nematode Oscheius sp. 1 CEW1. Genetics 163, 133–146.PubMedGoogle Scholar
  57. 57.
    Winston, W. M., Molodowitch, C., and Hunter, C. P. (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459.PubMedCrossRefGoogle Scholar
  58. 58.
    Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.PubMedCrossRefGoogle Scholar
  59. 59.
    Stewart, S. A., Dykxhoorn, D. M., Palliser, D., et al. (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501.PubMedCrossRefGoogle Scholar
  60. 60.
    Kawasaki, H. and Taira, K. (2003) Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700–707.PubMedCrossRefGoogle Scholar
  61. 61.
    Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., and Lieberman, J. (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351.PubMedCrossRefGoogle Scholar
  62. 62.
    Jiang, M. and Milner, J. (2002) Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21, 6041–6048.PubMedCrossRefGoogle Scholar
  63. 63.
    Shlomai, A. and Shaul, Y. (2003) Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37, 764–770.PubMedCrossRefGoogle Scholar
  64. 64.
    Kapadia, S. B., Brideau-Andersen, A., and Chisari, F. V. (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 2014–2018.PubMedCrossRefGoogle Scholar
  65. 65.
    Jia, Q. and Sun, R. (2003) Inhibition of gamma herpesvirus replication by RNA interference. J. Virol. 77, 3301–3306.PubMedCrossRefGoogle Scholar
  66. 66.
    Yamamoto, T., Omoto, S., Mizuguchi, M., Mizukami, H., Okuyama, H., Okada, N., Saksena, N. K., Brisibe, E. A., Otake, K., and Fuji, Y. R. (2002) Double-stranded nef RNA interferes with human immunodeficiency virus type 1 replication. Microbiol. Immunol. 46, 809–817.PubMedGoogle Scholar
  67. 67.
    Lichner, Z., Silhavy, D., and Burgyan, J. (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol. 84, 975–980.PubMedCrossRefGoogle Scholar
  68. 68.
    Hamada, M., Ohtsuka, T., Kawaida, R., Koizumi, M., Morita, K., Furukawa, H., Imanishi, T., Miyagishi, M., and Taira, K. (2002) Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev. 12, 301–309.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Mary K. Montgomery
    • 1
  1. 1.Biology DepartmentMacalester CollegeSt Paul

Personalised recommendations