Abstract
Among the cardiovascular pathologies, ischemic heart disease is the leading cause of congestive heart failure as well as permanent premature disabilities. Reperfusion of a previously ischemic heart is a standard clinical procedure. Even if beneficial, reperfusion triggers an inflammatory response that contributes to the acute extension of ischemic injury and later participates in the reparative processes of the damaged myocardium. Occlusion of a major coronary artery in small rodents, followed or not followed by reperfusion, has proven to be a good model to assess the relevance of pathophysiological processes and drug effects in the setting of myocardial ischemia. Models involving reperfusion appear to be particularly suitable to study the inflammatory response, which is much more marked than with permanent ischemia. Ischemia/reperfusion of the myocardium in wild-type and transgenic animals (mostly mice) allows the possibility of testing the vast array of mediators that orchestrate the sequelae of inflammation, including tumor necrosis factor (TNF). Moreover, this model allows testing of the protective effects of anti-inflammatory drugs in experimental myocardial infarction.
Key Words
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Yusuf, S., Reddy, S., Ounpuu, S., and Anand, S. (2001) Global burden of cardiovascular diseases. Part I: general considerations, the epidemiological transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753.
Rona, G., Chappel, C. I., Balazs, T., and Gaudry, R. (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch. Pathol. 67, 443–455.
Medvedev, O. S. and Gorodetskaya, E. A. (1993) Systemic and hemodynamic effects of perindopril in experimental heart failure. Am. Heart J. 126, 764–769.
Selye, H., Bajusz, E., Grasso, S., and Mendell, P. (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11, 398–407.
Anversa, P., Beghi, C., Kikkawa, Y., and Olivetti, G. (1985) Myocardial response to infarction: morphometric measurement of infarct size and myocyte cellular hypertrophy. Am. J. Pathol. 118, 484–492.
Anversa, P., Beghi, C., Kikkawa, Y., and Olivetti, G. (1986) Myocardial infarction in rats: infarct size, myocyte hypertrophy, and capillary growth. Circ. Res. 58, 26–37.
Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979) Myocardial infarct size and ventricular function in rats. Circ. Res. 44, 503–512.
Pfeffer, J. M., Pfeffer, M. A., Fletcher, P. J., and Braunwald, E. (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 260, H1406–H1414.
Entman, M. L., Michael, L. H., Rossen, R. D., Dreyer, W. J., Anderson, D. C., Taylor, A. D., et al. (1991) Inflammation in the course of early myocardial ischemia. FASEB J. 5, 2529–2537.
Himori, N. and Matsuura, A. (1989) A simple technique for occlusion and reperfusion of coronary artery in conscious rats. Am. J. Physiol. 256, H1719–H1725.
Nossuli, T. O., Lakshminarayanan, V., Baumgarten, G., Taffet, G. E., Ballantyne, C. M., Michael, L. H., et al. (2000) A chronic model of myocardial ischemiareperfusion: essential of cytokine studies. Am. J. Physiol. 278, H1049–H1055.
Entman, M. L., Nossuli, T. O., Lakshminarayanan, V., and Michael, L. H. (2000) For want of a few good shams. Am. J. Physiol. 278, H1017–H1018.
Yokoyama, T., Nakano, M., Bednarczyk, J. L., McIntyre, B. W., Entman, M., and Mann, D. L. (1997) Tumor necrosis factor-α provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 95, 1247–1252.
Finkel, M. S., Oddis, C. V., Jacob, T. D., Watkins, S. C., Hattler, B. G., and Simmons, R. L. (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257, 387–389.
Bozkurt, B., Kribbs, S. B., Clubb, F. J., Michael, L. H., Didenko, V. V., Hornsby, P. J., et al. (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97, 1382–1391.
Sivasubramanian, N., Coker, M. L., Kurrelmeyer, K. M., MacLellan, W. R., DeMayo, F. J., Spinale, F. G., et al. (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104, 826–831.
Irwin, M. W., Mak, S., Man, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999) Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation 99, 1492–1498.
Kurrelmeyer, K. M., Michael, L. H., Baumgarten, G., Taffet, G. E., Peschon, J. J., Sivasubramaninan, N., et al. (2000). Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc. Natl. Acad. Sci. USA 97, 5456–5461.
Gross, D. R. Animal Models in Cardiovascular Research, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
Wixson, S. K. and Smiller, K. L. Anesthesia and analgesia in rodents. In Anesthesia and Analgesia in Laboratory Animals (Kohn, D. F., Wixson, S. K., White, W. J., and Benson G. J., eds.), Academic, London, 1997, pp. 165–203.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc.
About this protocol
Cite this protocol
Chimenti, S., Carlo, E., Masson, S., Bai, A., Latini, R. (2004). Myocardial Infarction. In: Corti, A., Ghezzi, P. (eds) Tumor Necrosis Factor. Methods in Molecular Medicine™, vol 98. Humana Press. https://doi.org/10.1385/1-59259-771-8:217
Download citation
DOI: https://doi.org/10.1385/1-59259-771-8:217
Publisher Name: Humana Press
Print ISBN: 978-1-58829-223-0
Online ISBN: 978-1-59259-771-0
eBook Packages: Springer Protocols
