Skip to main content

Purification of Antilisterial Bacteriocins

  • Protocol
Public Health Microbiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 268))

Abstract

In recent years, numerous contamination outbreaks, involving various pathogens (i.e., Listeria and Salmonella), have increased concern over food preservation. Research efforts have focused on the discovery of new molecules targeting such foodborne pathogens and therefore able to inhibit and or kill them. Lactic acid bacteria (LAB) extensively used in fermented foods for thousands of years not only improve their flavor and texture but also inhibit pathogenic and spoilage microorganisms. LAB inhibitory activity is primarily owing to pH decrease and competition for substrates. Antagonistic activity of LAB also depends on secreted antimicrobial compounds with a poor selectivity, such as metabolic compounds (i.e., hydrogen peroxide, acetoin, and others) or more specific ones like bacteriocins. The latter are proteinaceous compounds, ribosomally synthesized and subsequently secreted by Gram-positive as well as Gram-negative bacteria. Their antimicrobial activity is generally restricted to strains phylogenetically related to the producers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39–85.

    PubMed  CAS  Google Scholar 

  2. Nes, I. F., Diep, D. B., Havarstein, L. S., Brurberg, M. B., Eijsink, V., and Holo, H. (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70, 113–128.

    Article  PubMed  CAS  Google Scholar 

  3. McAuliffe, O., Ross, R. P., and Hill, C. (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25, 285–308.

    Article  PubMed  CAS  Google Scholar 

  4. Ennahar, S., Sashihara, T., Sonomoto, K., and Ishizaki, A. (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 24, 85–106.

    Article  PubMed  CAS  Google Scholar 

  5. Schillinger, U., Geisen, R., and Holzapfel, W. H. (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of food. Trends Food Sci. Technol. 7, 158–164.

    Article  CAS  Google Scholar 

  6. Simon, L., Fremaux, C., Cenatiempo, Y., and Berjeaud, J. M. (2002) Sakacin G, a new type of antilisterial bacteriocin. Appl. Environ. Microbiol. 68, 6416–6420.

    Article  PubMed  CAS  Google Scholar 

  7. Marugg, J. D., Gonzalez, C. F., Kunka, B. S., et al. (1992) Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl. Environ. Microbiol. 58, 2360–2367.

    PubMed  CAS  Google Scholar 

  8. Aymerich, T., Holo, H., Havarstein, L. S., Hugas, M., Garriga, M., and Nes, I. F. (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62, 1676–1682.

    PubMed  CAS  Google Scholar 

  9. Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., and Urdaci, M. C. (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl. Environ. Microbiol. 66, 5213–5220.

    Article  PubMed  Google Scholar 

  10. Metivier, A., Pilet, M. F., Dousset, X., et al. (1998) Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology 144, 2837–2844.

    Article  PubMed  CAS  Google Scholar 

  11. Bruno, M. E. C. and Montville, T. J. (1993) Common mechanistic action of bacteriocins bacteria from lactic acid bacteria. Appl. Environ. Microbiol. 59, 3003–3010.

    PubMed  CAS  Google Scholar 

  12. Maftah, A., Renault, D., Vignoles, C., et al. (1993) Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. J. Bacteriol. 175, 3232–3235.

    PubMed  CAS  Google Scholar 

  13. Ramnath, M., Beukes, M., Tamura, K. and Hastings, J.W. (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 66, 3098–101.

    Article  PubMed  CAS  Google Scholar 

  14. Hechard, Y., Pelletier, C., Cenatiempo, Y., and Frere, J. (2001) Analysis of sigma(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147, 1575–11580.

    PubMed  CAS  Google Scholar 

  15. Dalet, K., Cenatiempo, Y., Cossart, P., The European Listeria Genome Consortium, and Héchard, Y. (2001) A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147(Pt. 12), 3263–3269.

    PubMed  CAS  Google Scholar 

  16. Axelsson, L. and Holck, A. (1995) The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177, 2125–2137.

    PubMed  CAS  Google Scholar 

  17. Huhne, K., Axelsson, L., Holck, A., and Krockel, L. (1996) Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142, 1437–1448.

    Article  PubMed  Google Scholar 

  18. Biet, F., Berjeaud, J. M., Worobo, R. W., Cenatiempo, Y., and Fremaux, C. (1998) Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology 144, 2845–2854.

    Article  PubMed  CAS  Google Scholar 

  19. Simon, L., Fremaux, C., Cenatiempo, Y., and Berjeaud, J. M. (2001) Luminescent method for the detection of antibacterial activities. Appl. Microbiol. Biotechnol., in press (OnLine D.O.I. 10.1007/s00253-001-0833-3).

    Google Scholar 

  20. Héchard, Y., Berjeaud, J.M. and Cenatiempo, Y. (1999) Characterization of the mesB gene and expression of bacteriocins by Leuconostoc mesenteroides Y105. Curr. Microbiol. 39, 265–269.

    Article  PubMed  Google Scholar 

  21. Revol-Junelles, A. M., Mathis, R., Krier, F., Fleury, Y., Delfour, A. and Lefebvre, G. (1996) Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins. Lett. Appl. Microbiol. 23, 120–124.

    Article  PubMed  CAS  Google Scholar 

  22. Guyonnet, D., Fremaux, C., Cenatiempo, Y., and Berjeaud, J.M. (2000) Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl. Environ. Microbiol. 66, 1744–1748.

    Article  PubMed  CAS  Google Scholar 

  23. Fremaux, C., Hechard, Y., and Cenatiempo, Y. (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141, 1637–1645.

    Article  PubMed  CAS  Google Scholar 

  24. Hastings, J. W., Sailer, M., Johnson, K., Roy, K. L., Vederas, J. C., and Stiles, M.E. (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173, 7491–500.

    PubMed  CAS  Google Scholar 

  25. Papathanasopoulos, M. A., Dykes, G. A., Revol-Junelles, A. M., Delfour, A., von Holy, A., and Hastings, J. W. (1998) Sequence and structural relationships of leucocins A-, B-and C-TA33a from Leuconostoc mesenteroides TA33a. Microbiology 144, 1343–1348.

    Article  PubMed  CAS  Google Scholar 

  26. Tichaczek, P. S., Vogel, R. F., and Hammes, W. P. (1994) Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology 140, 361–367.

    Article  PubMed  CAS  Google Scholar 

  27. Bennik, M. H., Vanloo, B., Brasseur, R., Gorris, L. G., and Smid, E. J. (1998) A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochim. Biophys. Acta 1373, 47–58.

    Article  PubMed  CAS  Google Scholar 

  28. Axelsson, L., Holck, A., Birkeland, S. E., Aukrust, T., and Blom, H. (1993) Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl. Environ. Microbiol. 59, 2868–2875.

    PubMed  CAS  Google Scholar 

  29. Bhugaloo-Vial, P., Dousset, X., Metivier, A., et al. (1996) Purification and amino acid sequences of piscicocins V1a and V1b, two class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity. Appl. Environ. Microbiol. 62, 4410–4416.

    PubMed  CAS  Google Scholar 

  30. Quadri, L. E., Sailer, M., Roy, K. L., Vederas, J. C., and Stiles, M. E. (1994) Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269, 12204–12211.

    PubMed  CAS  Google Scholar 

  31. Kaiser, A. L. and Montville, T. J. (1996) Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Environ. Microbiol. 62, 4529–4535.

    PubMed  CAS  Google Scholar 

  32. Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., and Nes, I. F. (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63, 4321–4330.

    PubMed  CAS  Google Scholar 

  33. Tomita, H., Fujimoto, S., Tanimoto, K., and Ike, Y. (1996) Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. J. Bacteriol. 178, 3585–3593.

    PubMed  CAS  Google Scholar 

  34. Yildirim, Z., Winters, D. K., and Johnson, M. G. (1999) Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J. Appl. Microbiol. 86, 45–54.

    Article  PubMed  CAS  Google Scholar 

  35. Felix, J. V., Papathanasopoulos, M. A., Smith, A. A., von Holy, A., and Hastings, J.W. (1994) Characterization of leucocin B-Ta11a: a bacteriocin from Leuconostoc carnosum Ta11a isolated from meat. Curr. Microbiol. 29, 207–212.

    Article  PubMed  CAS  Google Scholar 

  36. Jack, R. W., Wan, J., Gordon, J., et al. (1996) Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl. Environ. Microbiol. 62, 2897–2903.

    PubMed  CAS  Google Scholar 

  37. Tichaczek, P. S., Vogel, R. F., and Hammes, W. P. (1993) Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTH1174. Arch. Microbiol. 160, 279–283.

    Article  PubMed  CAS  Google Scholar 

  38. Motlagh, A., Bukhtiyarova, M., and Ray, B. (1994) Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett. Appl. Microbiol. 18, 305–312.

    Article  PubMed  CAS  Google Scholar 

  39. Schved, F., Lalazar, A., Lindner, P., and Juven, B. J. (1994) Interaction of the bacteriocin produced by Pediococcus acidilactici SJ-1 with the cell envelope of Lactobacillus spp. Lett. Appl. Microbiol. 19, 281–283.

    Article  CAS  Google Scholar 

  40. Larsen, A. G., Vogensen, F. K., and Josephsen, J. (1993) Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75, 113–122.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.Totowa, NJ

About this protocol

Cite this protocol

Berjeaud, JM., Cenatiempo, Y. (2004). Purification of Antilisterial Bacteriocins. In: Spencer, J.F.T., Ragout de Spencer, A.L. (eds) Public Health Microbiology. Methods in Molecular Biology, vol 268. Humana Press. https://doi.org/10.1385/1-59259-766-1:225

Download citation

  • DOI: https://doi.org/10.1385/1-59259-766-1:225

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-117-2

  • Online ISBN: 978-1-59259-766-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics