Advertisement

Affinity Capillary Electrophoresis Analyses of Protein—Protein Interactions in Target-Directed Drug Discovery

  • William E. Pierceall
  • Lixin Zhang
  • Dallas E. Hughes
Part of the Methods in Molecular Biology book series (MIMB, volume 261)

Abstract

protein—protein interactions are instrumental in virtually all biological processes and their understanding will shed light on designing novel and effective drugs for therapeutic interventions targeting the pathways in which they function. Protein—protein interactions have been studied using many genetic and biochemical methods, most recently, affinity capillary electrophoresis (ACE). We used ACE as a high-throughput screening assay to establish and define binding interactions between a therapeutic target protein and chemical entities from natural product or synthetic chemical libraries. Furthermore, ACE has demonstrated its value in the measurement of binding constants, the estimation of kinetic rate constants, and the determination of the stoichiometry of protein—protein interactions. Herein, we will describe qualitatively several assay formats using ACE for detecting protein—protein interactions, and discuss their advantages and limitations.

Key Words

protein—protein interactions hit-to-lead discovery capillary electrophoresis (CE) target(s) natural products library screening 

References

  1. 1.
    Perrier, V., Wallace, A. C., Kaneko, K., Safar, J., Prusiner, S. B., and Cohen, F. E. (2000) Mimicking dominant negative inhibition of prion replication through structure-based drug design. Proc. Natl. Acad. Sci. 97(11), 6073–6078.PubMedCrossRefGoogle Scholar
  2. 2.
    Hulme, E. C. (ed.) (1992) Receptor-Ligand Interaction: A Practical Approach, Oxford University Press, New York, NY.Google Scholar
  3. 3.
    Lakey, J. H. and Raggett, E. M. (1998) Measuring protein-protein interactions. Curr. Opin. Struct. Biol. 8, 119–123.PubMedCrossRefGoogle Scholar
  4. 4.
    Colton, I. J., Carbeck, J. D., Rao, J., and Whitesides, G. M. (1998) Affinity capillary electrophoresis: a physical-organic tool for studying interactions in biomolecular recognition. Electrophoresis 19, 367–382.PubMedCrossRefGoogle Scholar
  5. 5.
    Shimura, K. and Kasai, K.-I. (1996) Affinophoresis: selective electrophoretic separation of proteins using specific carriers. Methods Enzymol. 271, 203–218PubMedCrossRefGoogle Scholar
  6. 6.
    Chu, Y.-H. and Cheng, C. C. (1998) Affinity capillary electrophoresis in biomolecular recognition. Cell. Mol. Life Sci. 54, 663–683.PubMedCrossRefGoogle Scholar
  7. 7.
    Tanaka, Y. and Terabe, S. (2002) Estimation of binding constants by capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 768(1), 81–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Heegaard, N. H., Nissen, M. H., and Chen, D. D. (2002) Applications of on-line weak affinity interactions in free solution capillary electrophoresis. Electrophoresis 23(6), 815–822.PubMedCrossRefGoogle Scholar
  9. 9.
    Kasicka, V. (2001) Recent advances in capillary electrophoresis of peptides. Electrophoresis 22(19), 4139–4162.PubMedCrossRefGoogle Scholar
  10. 10.
    Brocke, A., Nicholson, G., and Bayer, E. (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22(7), 1251–1266.CrossRefGoogle Scholar
  11. 11.
    Knight, V., Sanglier, J. J., DiTullio, D., et al. (2003) Diversifying microbial natural products for drug discovery. Appl. Microbiol. Biotechnol. 62, 446–458.PubMedCrossRefGoogle Scholar
  12. 12.
    Tseng, W. L., Chang, H. T., Hsu, S. M., Chen, R. J., and Lin, S. (2002) Immuno-affinity capillary electrophoresis: determination of binding constant and stoichiometry for antibody-antigen interaction. Electrophoresis 23(6), 836–846.PubMedCrossRefGoogle Scholar
  13. 13.
    Karger, B. L., Chu, Y.-H., and Foret, F. (1995) Capillary electrophoresis of proteins and nucleic acids. Annu. Rev. Biophys. Biomol. Struct. 24, 579–610.PubMedCrossRefGoogle Scholar
  14. 14.
    Karger, B. L., Foret, F., and Berka, J. (1996) Capillary electrophoresis with polymer matrices: DNA and protein separation and analysis. Methods Enzymol. 271, 293–319.PubMedCrossRefGoogle Scholar
  15. 15.
    Le, X. C., Wan, Q. H., and Lam, M. T. (2002) Fluorescence polarization detection for affinity capillary electrophoresis. Electrophoresis 23(6), 903–908.PubMedCrossRefGoogle Scholar
  16. 16.
    Kiessig, S., Reissmann, J., Rascher, C., Kullertz, G., Fischer, A., and Thunecke, F. (2001) Application of a green fluorescent fusion protein to study protein-protein interactions by electrophoretic methods. Electrophoresis 22(7), 1428–1435.PubMedCrossRefGoogle Scholar
  17. 17.
    Vergnon, A. L. and Chu, Y. H. (1999) Electrophoretic methods for studying protein-protein interactions. Methods 19(2), 270–277.PubMedCrossRefGoogle Scholar
  18. 18.
    Wan, Q. H. and Le, X. C. (1999) Fluorescence polarization studies of affinity interactions in capillary electrophoresis. Anal. Chem. 71(19), 4183–4189.PubMedCrossRefGoogle Scholar
  19. 19.
    Little, J. N., Hughes, D. E., and Karger, B. L. (1999) A powerful screening technology utilizing capillary electrophoresis. American Biotechnology Laboratory 17, 36.Google Scholar
  20. 20.
    Hughes, D. E. and Karger, B. L. (1998) Screening natural samples for new therapeutic compounds using capillary electrophoresis. U.S. Patent No. 5,783,397.Google Scholar
  21. 21.
    Greve, K. F., Hughes, D. E., Richberg, P., Kats, M., and Karger, B. L. (1996) Liquid chromatographic and capillary electrophoretic examination of intact and degraded fusion protein CTLA4Ig and kinetics of conformational transition. J. Chromatogr. A. 723(2), 273–284.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunayevskiy, Y. M., Waters, J. L., and Hughes, D. E. (2001) Capillary electrophoretic methods to detect new biologically active compounds in complex biological material. U.S. Patent No. 6,299,747.Google Scholar
  23. 23.
    Polverini, P. J. (2002) Angiogenesis in health and disease: insights into basic mechanisms and therapeutic opportunities. J. Dent. Educ. 66(8), 962–975.PubMedGoogle Scholar
  24. 24.
    Folkman, J. (2002) Looking for a good endothelial address. Cancer Cell. 1(2), 113–115.PubMedCrossRefGoogle Scholar
  25. 25.
    Kiyohara, C., Otsu, A., Shirakawa, T., Fukuda, S., and Hopkin, J. (2002) Genetic polymorphisms and lung cancer susceptibility. Lung Cancer 37(3), 241.PubMedCrossRefGoogle Scholar
  26. 26.
    van Dam, H. and Castellazzi, M. (2001) Distinct roles of Jun∶Fos and Jun∶ATF dimers in oncogenesis. Oncogene 20(19), 2453–2464.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • William E. Pierceall
    • 1
  • Lixin Zhang
    • 1
  • Dallas E. Hughes
    • 1
  1. 1.Cetek CorporationMarlborough

Personalised recommendations