Structural Basis of Protein-Protein Interactions

  • Robert C. Liddington
Part of the Methods in Molecular Biology book series (MIMB, volume 261)


Regulated interactions between proteins govern signaling pathways within and between cells. Although it is possible to derive some general principles of protein-protein recognition from experimentally determined structures, recent structural studies on protein complexes formed during signal transduction illustrate the remarkable diversity of interactions, both in terms of interfacial size and nature. There are two broad classes of complexes: “domain-domain,” in which both components comprise prefolded structural units, and “domain-peptide,” in which one component is a short motif that is unstructured in the absence of its binding partner. Signaling complexes often involve multidomain proteins whose multifaceted binding functions are regulated by intramolecular domain interactions. The structural basis of regulation, via steric and allosteric mechanisms, is discussed.

Key Words

Protein structure protein complex crystallography allostery regulation 


  1. 1.
    Wodak, S. J. and Janin, J. (2003) Structural basis of macromolecular recognition. Adv. Protein Chem. 61, 9–73.CrossRefGoogle Scholar
  2. 2.
    Zheng, N., Schulman, B. A., Song, L., et al. (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709.PubMedCrossRefGoogle Scholar
  3. 3.
    Schulman, B. A., Carrano, A. C., Jeffrey, P. D., et al. (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381–386.PubMedCrossRefGoogle Scholar
  4. 4.
    Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418, 207–211.PubMedCrossRefGoogle Scholar
  5. 5.
    Bogan, A. A. and Thorn, K. S. (1998) Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Vetter, I. R. and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee, J.-O., Rieu, P., Arnaout, M. A., and Liddington, R. C. (1995) Crystal structure of the A-domain from the the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–635.PubMedCrossRefGoogle Scholar
  8. 8.
    Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimaoka, M., Tsan Xiao, T., Liu, J.-H., et al. (2003) Structures of the αL I Domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111.PubMedCrossRefGoogle Scholar
  10. 10.
    Kuhlmann, U. C, Pommer, A. J., Moore, G. R., James, R., and Kleanthous, C. (2000) Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J. Mol. Biol. 301, 1163–1178.PubMedCrossRefGoogle Scholar
  11. 11.
    Xiong, J. P., Stehle, T., Zhang, R., et al. (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155.PubMedCrossRefGoogle Scholar
  12. 12.
    Huizinga, E. G., Tsuji, S., Romijn, R. A., et al. (2002) Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 297, 1176–1179.PubMedCrossRefGoogle Scholar
  13. 13.
    Nishida, N., Sumikawa, H., Sakakura, M., et al. (2003) Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment. Nat. Struct. Biol. 10, 53–58.PubMedCrossRefGoogle Scholar
  14. 14.
    Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L., and Wiley, D. C. (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518.PubMedCrossRefGoogle Scholar
  15. 15.
    Liddington, R. C, Yan, Y.,R.,S., Benjamin, T., and Harrison, S. C. (1991) Crystal structure of Simian Virus 40 at 3.8 Å resolution. Nature 354, 278–284.PubMedCrossRefGoogle Scholar
  16. 16.
    Yaffe, M. B., Rittinger, K., Volinia, S., et al. (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961–971.PubMedCrossRefGoogle Scholar
  17. 17.
    Petosa, C, Masters, S. C, Bankson, L. A., et al. (1998) 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conseved amphipathic groove. J. Biol. Chem. 273, 16,305–16,310.PubMedCrossRefGoogle Scholar
  18. 18.
    Pokutta, S. and Weis, W. I. (2000) Structure of the dimerization and β-catenin-binding region of α-catenin. Molecular Cell 5, 533–543.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, J. O., Russo, A. A., and Pavletich, N. P. (1998) Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865.PubMedCrossRefGoogle Scholar
  20. 20.
    Eck, M. J., Shoelson, S. E., and Harrison, S. C. (1993) Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362, 87–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou, M. M., Ravichandran, K. S., Olejniczak, E. F., et al. (1995) Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378, 584–589.PubMedCrossRefGoogle Scholar
  22. 22.
    Doyle, D. A., Lee, A., Lewis, J., Kim, E., Sheng, M., and MacKinnon, R. (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayashi, I., Vuori, K, and Liddington, R. C. (2002) The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat. Struct. Biol. 9, 101–106.PubMedCrossRefGoogle Scholar
  24. 24.
    Meador, W. E., Means, A. R., and Quiocho, F. A. (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 262, 1718–1721.PubMedCrossRefGoogle Scholar
  25. 25.
    Musacchio, A., Saraste, M., and Wilmanns, M. (1994) High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat. Struct. Biol. 1, 546–551.PubMedCrossRefGoogle Scholar
  26. 26.
    Fedorov, A. A., Fedorov, E., Gertler, F., and Almo, S. C. (1999) Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Biol. 6, 661–665.PubMedCrossRefGoogle Scholar
  27. 27.
    Harrison, S. C. (1996) Peptide-surface association: the case of PDZ and PTB domains. Cell 86, 341–343.PubMedCrossRefGoogle Scholar
  28. 28.
    Di Paolo, G., Pellegrini, L., Letinic, K., et al. (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 by the FERM domain of talin. Nature 420, 85–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W., and Anderson, R. A. (2002) Type I phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D. A., et al. (2003) Structural Determinants of Integrin Recognition by Talin. Mol. Cell 11, 49–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Hamada, K., Shimizu, T., Yonemura, S., Tsukita, S., Tsukita, S., and Hakoshima, T. (2003) Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J. 22, 502–514.PubMedCrossRefGoogle Scholar
  32. 32.
    Cowan, K. J., Law, D. A., and Phillips, D. R. (2000) Identification of shc as the primary protein binding to the tyrosine-phosphorylated beta 3 subunit of alpha IIbbeta 3 during outside-in integrin platelet signaling. J. Biol. Chem. 275, 36,423–36,429.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu, W., Harrison, S. C., and Eck, M. J. (1997) Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602.PubMedCrossRefGoogle Scholar
  34. 34.
    Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M. J., and Shoelson, S. E. (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450.PubMedCrossRefGoogle Scholar
  35. 35.
    Pearson, M. A., Reczek, D., Bretscher, A., and Karplus, P. A. (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270.PubMedCrossRefGoogle Scholar
  36. 36.
    Martel, V., Racaud-Sultan, C., Dupe, S., et al. (2001) Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21,217–21,227.PubMedCrossRefGoogle Scholar
  37. 37.
    Yan, B., Calderwood, D. A., Yaspan, B., and Ginsberg, M. H. (2001) Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic domain. J. Biol. Chem. 276, 28,164–28,170.PubMedCrossRefGoogle Scholar
  38. 38.
    Lo Conte, L., Chothia, C. and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Robert C. Liddington
    • 1
  1. 1.The Burnham InstituteLa Jolla

Personalised recommendations