Abstract
Genetic transformation is an important technology that provides unique opportunities to find, isolate, and analyze genes, as well as to create organisms with unique functional characteristics. Insect biologists have been developing genetic transformation technologies that rely extensively on transposable elements. A number of class II transposable elements isolated originally from insects have been converted into broad host range insect gene vectors. Class II transposable elements are particularly amenable to gene vector development, although they suffer from some limitations such as low rates of recombination. Use of these gene vectors requires the physical introduction of the vectors into developing insect embryos by microinjection. Microinjection methods vary to accommodate the unique physical and developmental characteristics of the target insects. All methods rely on the use of fine glass needles in conjunction with micromanipulators and a microscope. A serious constraint on the use of existing systems can be the inefficiency of successfully delivering the gene vectors to the germ cells of the developing embryo. The general method for vector delivery to insect germ cells is described, as well as variations that are useful under some conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atkinson, P. W., Pinkerton, A. C., and O’Brochta, D. A. (2001) Genetic transformation systems in insects. Annu. Rev. Entomol. 46, 317–346.
Handler, A. M. An introduction to the history and methodology of insect gene transformation. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 3–26.
Handler, A. M. and O’Brochta, D. A. (1991) Prospects for gene transformation in insects. Annu. Rev. Entomol. 36, 159–183.
Walker, V. K. (1989) Gene transfer in insects. Adv. Cell Culture 7, 87–124.
Blackman, R. K., Macy, M., Koehler, D., Grimaila, R., and Gelbart, W. M. (1989) Identification of a fully-functional hobo transposable element and its use for germline transformation of Drosophila. EMBO J. 8, 211–217.
O’Brochta, D. A., Warren, W. D., Saville, K. J., and Atkinson, P. W. (1994) Interplasmid transposition of Drosophila hobo elements in non-drosophilid insects. Mol. Gen. Genet. 244, 9–14.
Handler, A. M. and James, A. A. (eds.) Insect Transgenesis. CRC, Boca Raton, FL, 2000.
Ashburner, M. (ed.) Drosophila: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.
Karess, R. E. P element mediated germ line transformation of Drosophila. In DNA Cloning: A Practical Approach (Glover, D., ed.), IRL (OUP USA), New York, NY, 1985, pp. 121–141.
Pirrotta, V. Cloning Drosophila genes. In Drosophila: A Practical Approach (Roberts, D. B., ed.), IRL (OUP USA), New York, NY, 1986, pp. 83–110.
Pirrotta, V. Vectors for P-element transformation in Drosophila. In Vectors: A Survey of Molecular Cloning Vectors and Their Uses (Rodriguez, R. L. and Denhardt, D. T., eds.), Butterworth, Boston, MA, 1988, pp. 437–456.
Spradling, A. C. P element-mediated transformation. In Drosophila. A Practical Approach (Roberts, D. B., ed.), IRL (OUP USA), New York, NY, 1986, pp. 175–198.
Morris, A. C. Microinjection of mosquito embryos. In The Molecular Biology of Insect Disease Vectors (Crampton, J. M., Beard, C. B., and Louis, C., eds.), Chapman and Hall, London, 1997, pp. 423–429.
Anderson, D. T. Development of hemimetabolous insects. In Developmental Systems: Insects (Counce, S. J. and Waddington, C. H., eds.), Academic, London, 1972, pp. 96–162.
Anderson, D. T. Development of holometabolous insects. In Developmental Systems: Insects (Counce, S. J. and Waddington, C. H., eds.), Academic, London, 1972, pp. 166–241.
Baldarelli, R. M. and Lengyel, J. A. (1990) Transient expression of DNA after ballistic introduction into Drosophila embryos. Nucleic Acids Res. 11, 5903–5904.
Leopold, R. A., Hughes, K. J., and DeVault, J. D. (1996) Using electroporation and a slot cuvette to deliver plasmid DNA to insect embryos. Genet. Anal. 12, 197–200.
Kamdar, K. P., Wagner, T. N., and Finnerty, V. Electroporation of Drosophila embryos. In Animal Cell Electroporation and Electrofusion Protocols (Nickoloff, J. A., ed.), Humana, Totowa, NJ, 1995, pp. 239–243.
Mialhe, E. and Miller, L. H. (1994) Biolistic techniques for transfection of mosquito embryos (Anopheles gambiae). Biotechniques 16, 924–931.
McCrane, V., Carlson, J. O., Miller, B. R., and Beaty, B. J. (1988) Microinjection of DNA into Aedes triseriatus ova and detection of integration. Amer. J. Trop. Med. Hyg. 39, 502–510.
Miller, L. H., Sakai, R. K., Romans, P., Gwadz, R. W., Kantoff, P., and Coon, H. G. (1987) Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779–781.
Morris, A. C., Eggelston, P., and Crampton, J. M. (1989) Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med. Vet. Entomology 3, 1–7.
Atkinson, P. W. and O’Brochta, D. A. Hermes and other hAT elements as gene vectors in insects. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 219–235.
Lampe, D. J., Walden, K. K. O., Sherwood, J. M., and Robertson, H. M. Genetic engineering of insects with mariner transposons. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 237–248.
Loukeris, T. G., Arca, B., Livadaras, I., Dialektaki, G., and Savakis, C. (1995) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 9485–9489.
Loukeris, T. G., Livadaras, I., Arca, B., Zabalou, S., and Savakis, C. (1995) Gene transfer into the Medfly, Ceratitis capitata, using a Drosophila hydei transposable element. Science 270, 2002–2005.
Fraser, M. J. The TTAA-specific family of transposable element: identification, functional characterization, and utility for transformation of insects. In Transgenic Insects: Methods and Applications (Handler, A. M. and James, A. A., eds.), CRC, Boca Raton, FL, 2000, pp. 249–268.
Sundararajan, P., Atkinson, P. W., and O’Brochta, D. A. (1999) Transposable element interactions in insects: Crossmobilization of hobo and Hermes. Insect Mol. Biol. 8, 359–368.
Atkinson, P. W., Warren, W. D., and O’Brochta, D. A. (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90, 9693–9697.
Robertson, H. M. (1993) The mariner transposable element is widespread in insects. Nature 362, 241–245.
Lohe, A. R. and Hartl, D. L. (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13, 549–555.
Scofield, S. R., English, J. J., and Jones, J. D. G. (1993) High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell 75, 507–517.
Heinlein, M., Brattig, T., and Kunze, R. (1994) In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 5, 705–714.
Horn, C. and Wimmer, E. A. (2000) A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637.
Coates, C. J., Jasinskiene, N., Morgan, D., Tosi, L. R. O., Beverly, S. M., and James, A. A. (2000) Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 30, 1003–1008.
Catteruccia, F., Nolan, T., Loukeris, T. G., Blass, C., Savakis, C., Kafatos, F. C., et al. (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959–962.
Allen, M., Levesque, C. S., O’Brochta, D. A., and Atkinson, P. W. (2001) Stable germline transformation of Culex quinquefasciatus (Diptera: Culicidae) J. Med. Entomol. 38, 701–710.
Peloquin, J. J., Thibault, S. T., Schouest, L. P., and Miller, T. A. (1997) Electromechanical microinjection of pink bollworm Pectinophora gossypiella embryos increases survival. Biotechniques 22, 496–499.
Kanda, T. and Tamura, T. (1991) Microinjection method for DNA in early embryos of the silkworm. Bull. Natl. Inst. Seri. Ento. Sci. 2, 31–46.
Brown, K. T. and Flaming, D. G. Advanced Micropipette Techniques in Cell Physiology. IBRO Handbook Series: Methods in the Neurosciences, Vol. 9, Wiley and Sons, New York, NY, 1986.
Jasinskiene, N., Coates, C. J., Benedict, M. Q., Cornel, A. J., Rafferty, C., Salazar-Rafferty, C., et al. (1998) Stable, transposon mediated transformation of the yellow fever mosquito, Aedes aegypti, using the Hermes element from the housefly. Proc. Natl. Acad. Sci. USA 95, 3743–3747.
Coates, C. J., Jasinskiene, N., Pott, G. B., and James, A. A. (1999) Promoter-directed expression of recombinant fire-fly luciferase in the salivary glands of Hermes-transformed Aedes aegypti. Gene 226, 317–325.
Pinkerton, A. C., Michel, K., O’Brochta, D. A., and Atkinson, P. W. (2000) Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol. Biol. 9, 1–10.
Moreira, L. A., Edwards, M. J., Adhami, F., Jasinskiene, N., James, A. A., and Jacobs-Lorena, M. (2000) Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc. Natl. Acad. Sci. USA 97, 10,895–10,898.
Kokoza, V., Ahmed, A., Cho, W. L., Jasinskiene, N., James, A. A., and Raikhel, A. (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 97, 9144–9149.
Michel, K., Staminova, A., Pinkerton, A. C., Franz, G., Robinson, A. S., Gariou-Papalexiou, A., et al. (2001) Hermes-mediated germline transformation of the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol. 10, 155–162.
O’Brochta, D. A., Atkinson, P. W., and Lehane, M. J. (2000) Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol. Biol. 9, 531–538.
Berghammer, A. J., Klingler, M., and Wimmer, E. A. (1999) A universal marker for transgenic insects. Nature 402, 370.
Handler, A. M., McCombs, S. D., Fraser, M. J., and Saul, S. H. (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc. Natl. Acad. Sci. USA 95, 7520–7525.
Handler, A. M. and Harrell, R. A. (2001) Transformation of the Caribbean fruit fly with a piggyBac transposon vector marked with polyubiquitin-regulated GFP. Insect Biochem. Mol. Biol. 31, 199–205.
Handler, A. M. and McCombs, S. D. (2000) The piggyBac transposon mediates germ-line transformation of the Oriental fruit fly and closely related elements exist in its genome. Insect Mol. Biol. 9, 605–612.
Hediger, M., Niessen, M., Wimmer, E. A., Dubendorfer, A., and Bopp, D. (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol. Biol 10, 113–119.
Peloquin, J. J., Thibault, S. T., Staten, R., and Miller, T. A. (2000) Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol. Biol. 9, 323–333.
Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat. Biotechnol. 18, 81–84.
Coates, C. J., Jasinskiene, N., Miyashiro, L., and James, A. A. (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 95, 3748–3751.
Christophiles, G. K., Livadaras, I., Savakis, C., and Komitopoulou, K. (2000) Two medfly promoters that have originated by recent gene duplication drive distinct sex, tissue and temporal expression patterns. Genetics 156, 173–182.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
O’ Brochta, D.A., Atkinson, P.W. (2004). Transformation Systems in Insects. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:227
Download citation
DOI: https://doi.org/10.1385/1-59259-755-6:227
Publisher Name: Humana Press
Print ISBN: 978-1-58829-007-6
Online ISBN: 978-1-59259-755-0
eBook Packages: Springer Protocols