Abstract
Advances in genome sciences are demonstrating the dynamic nature of noncoding DNA regions, which are comprised largely of repetitive elements with no apparent function. Retroposons are one class of mobile genetic elements that amplify and move about the genome via a copy-and-paste mechanism that employs an RNA intermediate. Short and long interspersed elements (SINEs and LINEs, respectively) are types of retroposons of particular interest because of their active role in shaping the architecture of genomes and their diagnostic value as evolutionary markers for studies of phylogeny and population biology. Although the use of SINEs and LINEs for molecular systematic studies is proliferating, a comprehensive laboratory protocol that explicitly outlines how to isolate and characterize retroposons for systematic studies in a detailed, step-by-step fashion has been lacking. The present chapter addresses this gap in the literature by focusing on the strategy for isolating new SINEs from a genomic library, the screening process, the sequencing and characterization of clones into subfamilies, quantification of copy number in host taxa, and the critical diagnosis of phylogenetically informative SINE and LINE insertion patterns. Practical limits to the method are discussed in relation to sampling design, systematic character theory, and the empirical distribution of elements observed in eukaryotic lineages. Major steps in the experimental process are illustrated with case examples from a diversity of taxonomic groups and by published results in the molecular biology and systematics literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kazazian, H. H., Jr., and Moran, J. V. (1998) The impact of L1 retrotransposons on the human genome. Nature Genet. 19, 19–24.
Brosius, J. (1991) Retroposons—seeds of evolution. Science 251, 753.
Shedlock, A. M. and Okada, N. (2000) SINE insertions: Powerful tools for molecular systematics. BioEssays 22, 148–160.
Rogers, J. (1983) Retroposons defined. Nature 301, 460.
Weiner, A., Deininger, P. L., and Efstratiadis, A. (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661.
Schmid, C. (1996) Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog. Nucl. Acid Res. and Mol. Biol. 53, 283–319.
Clark, J. B. and Kidwell, M. (1997) A phylogenetic perspective on P transposable element evolution in Drosophila. Proc. Natl. Acad. Sci. USA 94, 11,428–11,433.
Hartl, D. L., Lohe, A. R., and Lozovskya, E. R. (1997) Modern thoughts on an ancient mariner: function, evolution, regulation. Annu. Rev. Genet. 31, 337–358.
Okada, N. (1991) SINEs: short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 6, 358–361.
Okada, N. (1991) SINEs. Curr. Opin. Genet. Dev. 1, 498–504.
Eickbush, T. H. Origin and evolutionary relationships of retroelements. In The Evolutionary Biology of Viruses (Morse, S. S., ed.), Raven, New York, NY, 1994, pp. 121–157.
Nishihara, H., Terai, Y., and Okada, N. (2002) Characterization of novel Alu-and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol. Biol. Evol. 19, 1964–1972.
Ohshima, K., Hamada, M., Terai, Y., and Okada, N. (1996) The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol. Cell. Biol. 16, 3756–3764.
Okada, N. and Ohshima, K. Evolution of tRNA-derived SINEs. In The Impact of Short Interspersed Elements (SINEs) on the Host Genome (Maraia, R. J., ed.), RG Landes Co., Austin, TX, 1995, pp. 62–79.
Okada, N., Hamada, M., Ogiwara, I., and Ohshima, K. (1997) SINEs and LINEs share common 3′ sequences: a review. Gene 205, 229–243.
Terai, Y., Takahashi, K., and Okada, N. (1998) SINE Cousins: The 3′ end tails of the two oldest and distantly related families of SINEs are descended from the 3′ ends of LINEs with the same genealogical origin. Mol. Biol. Evol. 15, 1460–1471.
Kajikawa, M. and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444.
Murata, S., Takasaki, N., Saitoh, M., and Okada, N. (1993) Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc. Natl. Acad. Sci. USA 90, 6995–6999.
Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., et al. (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388, 666–670.
Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (1998) A novel family of short interspersed repetitive elements (SINEs) from cichlids: the pattern of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika. Mol. Biol. Evol. 15, 391–407.
Nikaido, M., Rooney, A. P., and Okada, N. (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. USA 96, 10,261–10,266.
Deininger, P. L. and Batzer, M. A. (1993) Evolution of retroposons. Evol. Biol. 27, 157–196.
Rokas, A. and Holland, P. W. (2000) Rare molecular changes as a tool for phylogenetics. Trends Ecol. Evol. 15, 454–459.
Shedlock, A. M., Milinkovitch, M. C., and Okada, N. (2000) SINE evolution, missing data, and the origin of whales. Syst. Biol. 49, 808–817.
Hillis, D. M. (1999) SINEs of the perfect character. Proc. Natl. Acad. Sci. USA 96, 9979–9981.
Miyamoto, M. M. (2000) Perfect SINEs of evolutionary history? Current Biology 9, 816–819.
Schmid, C. W. and Maraia, R. (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr. Opin. Genet. Devel. 2, 874–882.
Kim, J., Martignetti, J. A., Shen, M. R., Brosius, J., and Deininger, P. (1994) Rodent BC1 RNA gene as a master gene for ID element amplification. Proc. Natl. Acad. Sci. USA 91, 3607–3611.
Shen, M. R., Batzer, M. A., and Deininger, P. L. (1991) Evolution of the Master Alu Gene(s). J. Mol. Evol. 33, 311–320.
Matera, A. G., Hellman, U., and Schmid, C. W. (1990) A transpositionally and transcriptionally competent Alu subfamily. Mol. Cell. Biol. 10, 5424–5432.
Leeflang, E. P., Liu, W. M., Hashimoto, C., Choudary, P. V., and Schmid, C. W. (1992) Phylogenetic evidence for multiple Alu source genes. J. Mol. Evol. 35, 7–16.
Kido, Y., Himberg, M., Takasaki, N., and Okada, N. (1994) Amplification of distinct subfamilies of short interspersed elements (SINEs) during evolution of the Salmonidae. J. Mol. Biol. 241, 633–644.
Takasaki, N., Murata, S., Saitoh, M., Kobayashi, T., Park, L., and Okada, N. (1994) Species-specific amplification of tRNA-derived short interspersed repetitive elements (SINEs) by retroposition: A process of parasitization of entire genomes during the evolution of salmonids. Proc. Natl. Acad. Sci. USA 91, 10,153–10,157.
Hennig, W. (ed.) Phylogenetic Systematics. University of Illinois Press, Urbana-Champagne, IL, 1996.
Hendy, M. D. and Penny, D. (1989) A framework for the quantitative study of evolutionary trees. Syst. Zool. 38, 297–309.
Nei, M. and Kumar, S. (eds.) Molecular Evolution and Phylogenetics. Oxford University Press, New York, NY, 2000.
Manley, J. L., Fire, A., Cano, A., Sharp, P. A., and Gefter, M. L. (1980) DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA 83, 3156–3160.
Talkington, C. A., Nishioka, Y., and Leder, P. (1980) In vitro transcription of normal, mutant, and truncated mouse α-globin genes. Proc. Natl. Acad. Sci. USA 77, 7132–7136.
Blin, N. and Stafford, D. W. (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 13, 537–556.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
Sherry, S. T., Harpending, H. C., Batzer, M. A., and Stoneking, M. (1997) Alu evolution in human populations: Using the coalescent to estimate effective population size. Genetics 147, 1977–1982.
Endoh, H. and Okada, N. (1986) Total DNA transcription in vitro: a procedure to detect highly repetitive and transcribable sequences with tRNA-like structures. Proc. Natl. Acad. Sci. USA 83, 251–255.
Matsumoto, K., Murakami, K., and Okada, N. (1986) Gene for lysine tRNA1 may be a progenitor of the highly repetitive and transcribable sequences present in the salmon genome. Proc. Natl. Acad. Sci. USA 83, 3156–3160.
Nikaido, M., Nishihara, H., Fukumoto, Y., and Okada, N. (2003) Ancient SINEs from African Endemic Mammals. Mol. Biol. Evol. 20, 522–527.
Sprinzl, M., Hartmann, T., Meissner, F., Moll, J., and Vorderwülbecke, T. (1987) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 15, r53–r188.
Galli, G., Hofstetter, H., and Birnstiel, M. L. (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294, 626–631.
Smit, A. F. A., Toth, G., Riggs, A. D., and Jurka, J. (1995) Ancestral, mammalianwide subfamilies of LINE-1 repetitive sequences. J. Mol. Evol. 246, 401–417.
Britten, R. J., Baron, W. F., Stout, D. B., and Davidson, E. H. (1988) Sources and evolution of human Alu repeated sequences. Proc. Natl. Acad. Sci. USA 85, 4770–4774.
Jurka, J., Zeitkiewicz, E., and Labuda, D. (1995) Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the Mesozonic era. Nucleic Acids Res. 23, 170–175.
Nikaido, M., Matsuno, F., Abe, H., Shimamura, M., Matsubayashi, H., and Okada, N. (2001) Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mamm. Genome 12, 909–915.
Nikaido, M., Matsuno, F., Hamilton, H., Brownell, R. L., Jr., Cao, Y., Wang, D., et al. (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc. Natl. Acad. Sci. USA 98, 7384–7389.
Waddel, P. J., Okada, N., and Hasegawa, M. (1999) Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48, 1–5.
Cao, Y., Fujiwara, M., Nikaido, M., Okada, N., and Hasegawa, M. (2000) Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene 259, 149–158.
Nikaido, M., Harada, M., Cao, Y., Hasegawa, M., and Okada, N. (2000) Monophyletic origin of the order Chiroptera and its phylogenetic position among mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). J. Mol. Evol. 51, 318–328.
Nikaido, M., Kawai, K., Cao, Y., Harada, M., Okada, N., and Hasegawa, M. (2001) Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J. Mol. Evol. 53, 508–516.
Smit, A. F. A. and Riggs, A. D. (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23, 98–102.
Piscurek, O., Nikaido, M., Boeadi, M., and Okada, N. (2003) Unique mammalian tRNA-derived repetitive elements in Dermopterans: the t-SINE family and its retrotransposon through multiple sources. Mol. Biol. Evol. 20, 1659–1668.
Shimamura, M., Abe, H., Nikaido, M., Ohshima, K., and Okada, N. (1999) Genealogy of families of SINEs in cetacean and artiodactyls: The presence of a huge superfamily of tRNAGlu-derived families of SINEs. Mol. Biol. Evol. 16, 1046–1060.
Minnick, M. F., Stillwell, L. C., Heineman, J. M., and Stiegler, G. L. (1992) A highly repetitive DNA sequence possibly unique to canids. Gene 110, 235–238.
Coltman, D. W. and Wright, J. M. (1994) Can SINEs: a family of tRNA-derived retroposons specific to the superfamily Canoidea. Nucleic Acids Res. 22, 2726–2730.
van der Vlugt, H. H. J. and Lenstra, J. A. (1995) SINE elements of carnivores. Mamm. Genome 6, 49–51.
Sakagami, M., Ohshima, K., Mukoyama, H., Yasue, H., and Okada, N. (1994) A novel tRNA species as an origin of short interspersed repetitive elements (SINEs). Equine SINEs may have originated from tRNA(Ser). J. Mol. Biol. 239, 731–735.
Gallagher, P. C., Lear, T. L., Coogle, L. D., and Bailey, E. (1999) Two SINE families associated with equine microsatellite loci. Mamm. Genome 10, 140–144.
Borodulina, O. R. and Kramerov, D. A. (1999) Wide distribution of short interspersed elements among eukaryotic genomes. FEBS Lett. 457, 409–413.
Borodulina, O. R. and Kramerov, D. A. (2001) Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm. Genome 10, 779–786.
Schmitz, J., Ohme, M., and Zischler, H. (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other Primates. Genetics 157, 777–784.
Kramerov, D., Vassetzky, N., and Serdobova, I. (1999) The evolutionary position of dormice (Gliridae) in Rodentia determined by a novel short retroposon. Mol. Biol. Evol. 16, 715–717.
Kass, D. H., Raynor M. E., and Williams, T. M. (2000) Evolutionary history of B1 retroposons in the genus Mus. J. Mol. Evol. 51, 256–264.
Kido, Y., Aono, M., Yamaki, T., Matsumoto, K., Murata, S., Saneyoshi, M., et al. (1991) Shaping and reshaping of salmonid genomes by amplification of tRNAderived retroposon during evolution. Proc. Natl. Acad. Sci. USA 88, 2326–2330.
Murata, S., Takasaki, N., Saitoh, M., Tachida, H., and Okada, N. (1996) Details of retropositional genome dynamics that provide a rationale for a genetic division: the distinct branching of all the Pacific salmon and trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo). Genetics 142, 915–926.
Kido, Y., Saitoh, M., Murata, S., and Okada, N. (1995) Evolution of the active sequences of the HpaI short interspersed elements. J. Mol. Evol. 41, 986–995.
Takasaki, N., Park, L., Kaeriyama, M., Gharrett, A. J., and Okada, N. (1996) Characterization of species-specifically amplified SINEs in three salmonid species—chum salmon, pink salmon, and kokanee: the local environment of the genome may be important for the generation of a dominant source gene at a newly retroposed locus. J. Mol. Evol. 42, 103–106.
Izsvak, Z., Ivics, Z., Garcia-Estefania, D., Fahrenkrug, S. C., and Hackett, P. B. (1996) DANA elements: a family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zebrafish (Danio rerio). Proc. Natl. Acad. Sci. USA 93, 1077–1081.
Takahashi, K., Nishida, M., Yuma, M., and Okada, N. (2001) Retroposition of the AFC family of SINEs (Short Interspersed Repetitive Elements) before and during the adaptive radiation of cichlid fishes in lake Malawi and related inferences about phylogeny. J. Mol. Evol. 53, 496–507.
Ogiwara, I., Miya, M., Ohshima, K., and Okada, N. (2002) V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res. 12, 316–324.
Nagahashi, S., Endoh, H., Suzuki, Y., and Okada, N. (1991) Characterization of a tandemly repeated DNA sequence family originally derived by retroposition of tRNA(Glu) in the newt. J. Mol. Biol. 222, 391–404.
Unsal, K. and Morgan, G. T. (1995) A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs. J. Mol. Biol. 248, 812–823.
Ohshima, K., Koishi, R., Matsuo, M., and Okada, N. (1993) Several short interspersed repetitive elements (SINEs) in distant species may have originated from a common ancestral retrovirus: characterization of a squid SINE and a possible mechanism for generation of tRNA-derived retroposons. Proc. Natl. Acad. Sci. USA 90, 6260–6264.
Ohshima, K. and Okada, N. (1994) Generality of the tRNA origin of short interspersed repetitive elements (SINEs). Characterization of three different tRNA-derived retroposons in the octopus. J. Mol. Biol. 243, 25–37.
Mochizuki, K., Umeda, M., Ohtsubo, H., and Ohtsubo, E. (1992) Characterization of a plant SINE, p-SINE1, in rice genomes. Jpn. J. Genet. 67, 155–166.
Deragon, J. M., Landry, B. S., Pelissier, T., Tutois, S., Tourmente, S., and Picard, G. (1994) An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J. Mol. Evol. 39, 378–386.
Yoshioka, Y., Matsumoto, S., Kojima, S., Ohshima, K., Okada, N., and Machida, Y. (1993) Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc. Natl. Acad. Sci. USA 90, 6562–6566.
Surzycki, S. A. and Belknap, W. R. (1999) Characterization of repetitive DNA elements in Arabidopsis. J. Mol. Biol. 48, 684–691.
Hamada, M., Takasaki, N., Reist, J. D., DeCicco, A. L., Goto, A., and Okada, N. (1998) Detection of the ongoing sorting of ancestrally polymorphic SINEs toward fixation or loss in populations of two species of charr during speciation. Genetics 150, 301–311.
Takahashi, K., Terai, Y., Nishida, M., and Okada, N. (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol. Biol. Evol. 18, 2057–2066.
Terai, Y., Takahashi, K., Nishida, M., Sato, T., and Okada, N. (2003) Using SINEs to probe ancient explosive speciation: “Hidden” radiation of African Cichlids? Mol. Biol. Evol. 20, 924–930.
Stoneking, M., Fontius, J. J., Clifford, S. L., Soodyall, H., Arcot, S. S., Saha, N., et al. (1997) Alu insertion polymorphisms and human evolution: Evidence for a larger population size in Africa. Genome Res. 7, 1061–1071.
Lum, J. K., Nikaido, M., Shimamura, M., Shimodaira, H., Shedlock, A. M., Okada, N., et al. (2000) Consistency of SINE insertion topology and flanking sequence tree: Quantifying relationships among cetartiodactyls. Mol. Biol. Evol. 17, 1417–1424.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Okada, N., Shedlock, A.M., Nikaido, M. (2004). Retroposon Mapping in Molecular Systematics. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:189
Download citation
DOI: https://doi.org/10.1385/1-59259-755-6:189
Publisher Name: Humana Press
Print ISBN: 978-1-58829-007-6
Online ISBN: 978-1-59259-755-0
eBook Packages: Springer Protocols