Skip to main content

The Application of LTR Retrotransposons as Molecular Markers in Plants

  • Protocol
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 260))

Abstract

Retrotransposons are major, dispersed components of most eukaryotic genomes. They replicate by a cycle of transcription, reverse transcription, and integration of new copies, without excising from the genome in the process. Because they represent a major share of the genome, cause easily detectable genetic changes having known ancestral and derived states, and contain conserved regions for which polymerase chain reaction (PCR) primers may be designed, retrotransposon insertions can be exploited as powerful molecular marker systems. Here, we describe the background and strategies, as well as give detailed laboratory protocols, for four key retrotransposon-based methods: SSAP, IRAP, REMAP, and RBIP. The SSAP, IRAP, and REMAP methods are multiplex and generate anonymous marker bands; RBIP scores individual loci, much as microsatellite-based marker systems do. The methods are variously suited to marker detection on agarose and polyacrylamide slab gels, slab and capillary sequencing devices, and arrays on solid supports. The different strengths and weaknesses of these approaches and their performance relative to conventional marker methods are discussed, together with their applicability to marker-assisted breeding, phylogenetic analyses, biodiversity determinations, and evolutionary studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am. J. Human Genet. 32, 314–331.

    CAS  Google Scholar 

  2. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  3. Zhao, X. and Kochert, G. (1993) Phylogenetic distribution and genetic mapping of a (GCG)n microsatellite from rice (Oryza sativa). Plant Mol. Biol. 21, 607–614.

    Article  PubMed  CAS  Google Scholar 

  4. Zietkiewicz, E., Rafalski, A., and Labuda, D. (1989) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.

    Article  Google Scholar 

  5. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van der Lee, T., Hornes, M., et al. (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 21, 4407–4414.

    Article  Google Scholar 

  6. Kumar, A. and Bennetzen, J. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479–532.

    Article  PubMed  CAS  Google Scholar 

  7. Grandbastien, M.-A. (1992) Retroelements in higher plants. Trends Genet. 8, 103–108.

    PubMed  CAS  Google Scholar 

  8. Bennetzen, J. L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4, 347–353.

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt, T. (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol. Biol. 40, 903–910.

    Article  PubMed  CAS  Google Scholar 

  10. Frankel, A. D. and Young, J. A. (1998) HIV-1: Fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1–25.

    Article  PubMed  CAS  Google Scholar 

  11. Xiong, Y. and Eickbush, T. H. (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362.

    PubMed  CAS  Google Scholar 

  12. Doolittle, R. F., Feng, D. F., McClure, M. A., and Johnson, M. S. (1990) Retrovirus phylogeny and evolution. Curr. Top. Microbiol. Immunol. 157, 1–18.

    PubMed  CAS  Google Scholar 

  13. Sverdlov, E. D. (2000) Retroviruses and primate evolution. BioEssays 22, 161–171.

    Article  PubMed  CAS  Google Scholar 

  14. Sandmeyer, S. B. and Menees, T. M. (1996) Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr. Top. Microbiol. Immunol. 2124, 261–296.

    Google Scholar 

  15. Pearce, S. R., Harrison, G., Li, D., Heslop-Harrison, J. S., Kumar, A., and Flavell, A. J. (1996) The Ty1-copia group of retrotransposons in Vicia species: Copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 205, 305–315.

    Google Scholar 

  16. SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.

    Article  PubMed  CAS  Google Scholar 

  17. Shirasu, K., Schulman, A. H., Lahaye, T., and Schulze-Lefert, P. (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915.

    Article  PubMed  CAS  Google Scholar 

  18. Suoniemi, A., Anamthawat-Jónsson, K., Arna, T., and Schulman, A. H. (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30, 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  19. Kumar, A., Pearce, S. R., McLean, K., Harrison, G., Heslop-Harrison, J. S., Waugh, R., et al. (1997) The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100, 205–217.

    Article  PubMed  CAS  Google Scholar 

  20. Heslop-Harrison, J. S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A. V., Alkhimova, E. G., et al. (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197–204.

    Article  PubMed  CAS  Google Scholar 

  21. SanMiguel, P. and Bennetzen, J. L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82, 37–44.

    Article  CAS  Google Scholar 

  22. Vicient, C. M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E., et al. (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769–1784.

    Article  PubMed  CAS  Google Scholar 

  23. Voytas, D. F., Cummings, M. P., Konieczny, A. K., Ausubel, F. M., and Rodermel, S. R. (1992) Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89, 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  24. Flavell, A. J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R., and Kumar, A. (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 20, 3639–3644.

    Article  PubMed  CAS  Google Scholar 

  25. Suoniemi, A., Tanskanen, J., and Schulman, A. H. (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13, 699–705.

    Article  PubMed  CAS  Google Scholar 

  26. Rowold, D. J. and Herrara, R. J. (2000) Alu elements and the human genome. Genetica 108, 57–72.

    Article  PubMed  CAS  Google Scholar 

  27. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., et al. (1997) Molecular evidence from retroposons that whales form a clade within eventoed ungulates. Nature 388, 666–670.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar, A. and Hirochika, H. (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci. 6, 127–134.

    Article  PubMed  CAS  Google Scholar 

  29. Yu, G.-X. and Wise, R. P. (2000) An anchored AFLP-and retrotransposon-based map of diploid Avena. Genome 43, 736–749.

    Article  PubMed  CAS  Google Scholar 

  30. Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. T., et al. (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (SSAP). Mol. Gen. Genet. 253, 687–694.

    Article  PubMed  CAS  Google Scholar 

  31. Vogel, J. M. and Morgante, M. A microsatellite-based, multiplexed genome assay. In Plant Genome III Conference, San Diego, CA, 1992.

    Google Scholar 

  32. Korswagen, H. C., Smits, M. T., Durbin, R. M., and Plasterk, R. H. A. (1996) Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc. Natl. Acad. Sci. USA 93, 14,680–14,685.

    Article  PubMed  CAS  Google Scholar 

  33. Van den Broeck, D., Maes, T., Sauer, M., Zethof, J., De Keukeleire, P., D’Hauw, M., et al. (1998) Transposon Display identifies individual transposable elements in high copy number lines. Plant Jour. 13, 121–129.

    Google Scholar 

  34. Ellis, T. H. N., Poyser, S. J., Knox, M. R., Vershinin, A. V., and Ambrose, M. J. (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol. Gen. Genet. 260, 9–19.

    PubMed  CAS  Google Scholar 

  35. Pearce, S. R., Stuart-Rogers, C., Knox, M. R., Kumar, A., Noel Ellis, T. H., and Flavell, A. J. (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J. 19, 711–717.

    Google Scholar 

  36. Lee, D., Ellis, T. H. N., Turner, L., Hellens, R. P., and Cleary, W. G. (1990) A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol. Biol. 15, 707–722.

    Article  PubMed  CAS  Google Scholar 

  37. Vershinin, A. V. and Ellis, T. H. (1999) Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Mol. Gen. Genet. 262, 703–713.

    Article  PubMed  CAS  Google Scholar 

  38. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., and Schulman, A. H. (1999) IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711.

    Article  CAS  Google Scholar 

  39. Manninen, O., Kalendar, R., Robinson, J., and Schulman, A. H. (2000) Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Mol. Gen. Genet. 264, 325–334.

    Article  PubMed  CAS  Google Scholar 

  40. Boyko, E., Kalendar, R., Korzun, V., et al. (2002) A high density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense related genes: insight into cereal chromosome structure and function. Plant Mol. Biol. 48, 767–790.

    Article  PubMed  CAS  Google Scholar 

  41. Vicient, C. M., Jääskeläinen, M., Kalendar, R., and Schulman, A. H. (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125, 1283–1292.

    Article  PubMed  CAS  Google Scholar 

  42. Kankaanpää, J., Mannonen, L., and Schulman, A. H. (1996) The genome sizes of Hordeum species show considerable variation. Genome 39, 730–735.

    Article  Google Scholar 

  43. Panstruga, R., Bìschges, R., Piffanelli, P., and Schulze-Lefert, P. (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 26, 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  44. Price, Z., Schulman, A. H., and Mayes, S. (2003) Development of new marker methods—an example from oil palm. Plant Genet. Resour. (in press).

    Google Scholar 

  45. McCouch, S. R., Chen, X., Panaud, O., Temnykh, S., Xu, Y., Cho, Y. G., et al. (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35, 89–99.

    Article  PubMed  CAS  Google Scholar 

  46. Saghai Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q., and Allard, R. W. (1994) Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91, 5466–5470.

    Google Scholar 

  47. Ramsay, L., Macaulay, M., Carle, L., Morgante, M., degli Ivanissevich, S., Maestri, E., et al. (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 17, 415–425.

    Article  PubMed  CAS  Google Scholar 

  48. Provan, J., Thomas, W. T. B., Forester, B. P., and Powell, W. (1999) Copia-SSR: A simple marker technique which can be used on total genomic DNA. Genome 42, 363–366.

    Article  CAS  Google Scholar 

  49. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., and Schulman, A. H. (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97, 6603–6607.

    Article  PubMed  CAS  Google Scholar 

  50. Jääskeläinen, M., Mykkänen, A.-H., Arna, T., Vicient, C., Suoniemi, A., Kalendar, R., et al. (1999) Retrotransposon BARE-1: Expression of encoded proteins and formation of virus-like particles in barley cells. Plant J. 20, 413–422.

    Article  PubMed  Google Scholar 

  51. Flavell, A. J., Knox, M. R., Pearce, S. R., and Ellis, T. H. N. (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16, 643–650.

    Article  PubMed  CAS  Google Scholar 

  52. DeRisi, J. L., Vishwanath, R. I., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.

    Article  PubMed  CAS  Google Scholar 

  53. Flavell, A. J., Bolshakov, V. N., Booth, A., et al. (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker approach. Nucl. Acids Res. 31, e115.

    Article  PubMed  Google Scholar 

  54. Singh, R. P., Singh, M., and King, R. R. (1998) Use of citric acid for neutralizing polymerase chain reaction inhibition by chlorogenic acid in potato extracts. J. Virol. Methods 74, 231–235.

    Article  PubMed  CAS  Google Scholar 

  55. McClelland, M., Nelson, M., and Raschke, E. (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 22, 3640–3659.

    Article  PubMed  CAS  Google Scholar 

  56. Biggin, M. D., Gibson, T. J., and Hong, G. F. (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80, 3963–3965.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schulman, A.H., Flavell, A.J., Ellis, T.H.N. (2004). The Application of LTR Retrotransposons as Molecular Markers in Plants. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:145

Download citation

  • DOI: https://doi.org/10.1385/1-59259-755-6:145

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-007-6

  • Online ISBN: 978-1-59259-755-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics