Abstract
Retrotransposons are major, dispersed components of most eukaryotic genomes. They replicate by a cycle of transcription, reverse transcription, and integration of new copies, without excising from the genome in the process. Because they represent a major share of the genome, cause easily detectable genetic changes having known ancestral and derived states, and contain conserved regions for which polymerase chain reaction (PCR) primers may be designed, retrotransposon insertions can be exploited as powerful molecular marker systems. Here, we describe the background and strategies, as well as give detailed laboratory protocols, for four key retrotransposon-based methods: SSAP, IRAP, REMAP, and RBIP. The SSAP, IRAP, and REMAP methods are multiplex and generate anonymous marker bands; RBIP scores individual loci, much as microsatellite-based marker systems do. The methods are variously suited to marker detection on agarose and polyacrylamide slab gels, slab and capillary sequencing devices, and arrays on solid supports. The different strengths and weaknesses of these approaches and their performance relative to conventional marker methods are discussed, together with their applicability to marker-assisted breeding, phylogenetic analyses, biodiversity determinations, and evolutionary studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am. J. Human Genet. 32, 314–331.
Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.
Zhao, X. and Kochert, G. (1993) Phylogenetic distribution and genetic mapping of a (GCG)n microsatellite from rice (Oryza sativa). Plant Mol. Biol. 21, 607–614.
Zietkiewicz, E., Rafalski, A., and Labuda, D. (1989) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van der Lee, T., Hornes, M., et al. (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 21, 4407–4414.
Kumar, A. and Bennetzen, J. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479–532.
Grandbastien, M.-A. (1992) Retroelements in higher plants. Trends Genet. 8, 103–108.
Bennetzen, J. L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4, 347–353.
Schmidt, T. (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol. Biol. 40, 903–910.
Frankel, A. D. and Young, J. A. (1998) HIV-1: Fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1–25.
Xiong, Y. and Eickbush, T. H. (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362.
Doolittle, R. F., Feng, D. F., McClure, M. A., and Johnson, M. S. (1990) Retrovirus phylogeny and evolution. Curr. Top. Microbiol. Immunol. 157, 1–18.
Sverdlov, E. D. (2000) Retroviruses and primate evolution. BioEssays 22, 161–171.
Sandmeyer, S. B. and Menees, T. M. (1996) Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr. Top. Microbiol. Immunol. 2124, 261–296.
Pearce, S. R., Harrison, G., Li, D., Heslop-Harrison, J. S., Kumar, A., and Flavell, A. J. (1996) The Ty1-copia group of retrotransposons in Vicia species: Copy number, sequence heterogeneity and chromosomal localisation. Mol. Gen. Genet. 205, 305–315.
SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.
Shirasu, K., Schulman, A. H., Lahaye, T., and Schulze-Lefert, P. (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915.
Suoniemi, A., Anamthawat-Jónsson, K., Arna, T., and Schulman, A. H. (1996) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30, 1321–1329.
Kumar, A., Pearce, S. R., McLean, K., Harrison, G., Heslop-Harrison, J. S., Waugh, R., et al. (1997) The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100, 205–217.
Heslop-Harrison, J. S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A. V., Alkhimova, E. G., et al. (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197–204.
SanMiguel, P. and Bennetzen, J. L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82, 37–44.
Vicient, C. M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E., et al. (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769–1784.
Voytas, D. F., Cummings, M. P., Konieczny, A. K., Ausubel, F. M., and Rodermel, S. R. (1992) Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89, 7124–7128.
Flavell, A. J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R., and Kumar, A. (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 20, 3639–3644.
Suoniemi, A., Tanskanen, J., and Schulman, A. H. (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13, 699–705.
Rowold, D. J. and Herrara, R. J. (2000) Alu elements and the human genome. Genetica 108, 57–72.
Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., et al. (1997) Molecular evidence from retroposons that whales form a clade within eventoed ungulates. Nature 388, 666–670.
Kumar, A. and Hirochika, H. (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci. 6, 127–134.
Yu, G.-X. and Wise, R. P. (2000) An anchored AFLP-and retrotransposon-based map of diploid Avena. Genome 43, 736–749.
Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. T., et al. (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (SSAP). Mol. Gen. Genet. 253, 687–694.
Vogel, J. M. and Morgante, M. A microsatellite-based, multiplexed genome assay. In Plant Genome III Conference, San Diego, CA, 1992.
Korswagen, H. C., Smits, M. T., Durbin, R. M., and Plasterk, R. H. A. (1996) Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc. Natl. Acad. Sci. USA 93, 14,680–14,685.
Van den Broeck, D., Maes, T., Sauer, M., Zethof, J., De Keukeleire, P., D’Hauw, M., et al. (1998) Transposon Display identifies individual transposable elements in high copy number lines. Plant Jour. 13, 121–129.
Ellis, T. H. N., Poyser, S. J., Knox, M. R., Vershinin, A. V., and Ambrose, M. J. (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol. Gen. Genet. 260, 9–19.
Pearce, S. R., Stuart-Rogers, C., Knox, M. R., Kumar, A., Noel Ellis, T. H., and Flavell, A. J. (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J. 19, 711–717.
Lee, D., Ellis, T. H. N., Turner, L., Hellens, R. P., and Cleary, W. G. (1990) A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol. Biol. 15, 707–722.
Vershinin, A. V. and Ellis, T. H. (1999) Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Mol. Gen. Genet. 262, 703–713.
Kalendar, R., Grob, T., Regina, M., Suoniemi, A., and Schulman, A. H. (1999) IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704–711.
Manninen, O., Kalendar, R., Robinson, J., and Schulman, A. H. (2000) Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Mol. Gen. Genet. 264, 325–334.
Boyko, E., Kalendar, R., Korzun, V., et al. (2002) A high density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense related genes: insight into cereal chromosome structure and function. Plant Mol. Biol. 48, 767–790.
Vicient, C. M., Jääskeläinen, M., Kalendar, R., and Schulman, A. H. (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125, 1283–1292.
Kankaanpää, J., Mannonen, L., and Schulman, A. H. (1996) The genome sizes of Hordeum species show considerable variation. Genome 39, 730–735.
Panstruga, R., Bìschges, R., Piffanelli, P., and Schulze-Lefert, P. (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 26, 1056–1062.
Price, Z., Schulman, A. H., and Mayes, S. (2003) Development of new marker methods—an example from oil palm. Plant Genet. Resour. (in press).
McCouch, S. R., Chen, X., Panaud, O., Temnykh, S., Xu, Y., Cho, Y. G., et al. (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35, 89–99.
Saghai Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q., and Allard, R. W. (1994) Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91, 5466–5470.
Ramsay, L., Macaulay, M., Carle, L., Morgante, M., degli Ivanissevich, S., Maestri, E., et al. (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 17, 415–425.
Provan, J., Thomas, W. T. B., Forester, B. P., and Powell, W. (1999) Copia-SSR: A simple marker technique which can be used on total genomic DNA. Genome 42, 363–366.
Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., and Schulman, A. H. (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97, 6603–6607.
Jääskeläinen, M., Mykkänen, A.-H., Arna, T., Vicient, C., Suoniemi, A., Kalendar, R., et al. (1999) Retrotransposon BARE-1: Expression of encoded proteins and formation of virus-like particles in barley cells. Plant J. 20, 413–422.
Flavell, A. J., Knox, M. R., Pearce, S. R., and Ellis, T. H. N. (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 16, 643–650.
DeRisi, J. L., Vishwanath, R. I., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.
Flavell, A. J., Bolshakov, V. N., Booth, A., et al. (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker approach. Nucl. Acids Res. 31, e115.
Singh, R. P., Singh, M., and King, R. R. (1998) Use of citric acid for neutralizing polymerase chain reaction inhibition by chlorogenic acid in potato extracts. J. Virol. Methods 74, 231–235.
McClelland, M., Nelson, M., and Raschke, E. (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 22, 3640–3659.
Biggin, M. D., Gibson, T. J., and Hong, G. F. (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80, 3963–3965.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Schulman, A.H., Flavell, A.J., Ellis, T.H.N. (2004). The Application of LTR Retrotransposons as Molecular Markers in Plants. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:145
Download citation
DOI: https://doi.org/10.1385/1-59259-755-6:145
Publisher Name: Humana Press
Print ISBN: 978-1-58829-007-6
Online ISBN: 978-1-59259-755-0
eBook Packages: Springer Protocols