Abstract
The development of in vitro transposition technologies have provided many powerful tools for the molecular genetics research laboratory. In this chapter we describe some of these tools with a focus on the Tn5 transposition system. Tn5 technologies are particularly useful because the Tn5 transposition system has simple requirements, is efficient, random in target recognition, and robust. In particular we will describe the use of in vitro Tn5 transposition in transposon tagging and in the generation of nested deletions. We will also describe a unique in vitro/in vivo technology in which Tn5 inserts can be generated in a wide spectrum of bacterial species through the electroporation of preformed tranposase-transposon DNA complexes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goryshin, I. Y. and Reznikoff, W. S. (1998) Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374.
Devine, S. E. and Boeke, J. D. (1994) Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res. 22, 3765–3772.
Gwinn, M. L., Stellwagen, A. E., Craig, N. L., Tomb, J. F., and Smith, H. O. (1997) In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation. J. Bact. 179, 7315–7320.
Haapa, S., Taira, S., Heikkinen, E., and Salvilahti, H. (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27, 2777–2784.
Akerley, B. J., Rubin, E. J., Camilli, A., Lampe, D. J., Robertson, H. M., and Mekalanos, J. J. (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95, 8927–8932.
Griffin, T. J. IV, Parsons, L., Leschziner, A. E., DeVost, J., Derbyshire, K. M., and Grindley, N. D. F. (1999) In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27, 3859–3865.
Goryshin, I. Y., Jendrisak, J., Hoffman, L. M., Meis, R., and Reznikoff, W. S. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nature Biotech. 18, 97–100.
Hoffman, L. M., Jendrisak, J. J., Meis, R. J., Goryshin, I. Y., and Reznikoff, W. S. (2000) Transposome insertional mutagenesis and direct sequencing of microbial genomics. Genetica 108, 19–24.
O’Mullan, P. J. (2000) Direct sequencing of BAC clones without subcloning or primer walking using EZ::TN transposon tools. Epicentre Forum 7, 1–3.
Gehring, A. M., Nodwell, J. R., Beverley, S. M., and Losick, R. (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc. Natl. Acad. Sci. USA 97, 9642–9647.
Judson, N. and Mekalanos, J. J. (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nature Biotech. 18, 740–745.
York, D., Welch, J., Goryshin, I. Y., and Reznikoff, W. S. (1998) Simple and efficient generation in vitro of nested deletions and inversions: Tn5 intramolecular transposition. Nucleic Acids Res. 26, 1927–1933.
Reznikoff, W. S., Bhasin, A., Davies, D. R., Goryshin, I. Y., Naumann, T., Rayment, I., et al. (1999) Tn5: A molecular window on transposition. Biochem. Biophys. Res. Commun. 266, 729–734.
Davies, D. R., Goryshin, I. Y., Reznikoff, W. S., and Rayment, I. (2000) Three-dimensional structure on the Tn5 synaptic complex transposition intermediate. Science 289, 77–85.
Weinreich, M. D., Gasch, A., and Reznikoff, W. S. (1994) Evidence that the cis preference of the Tn5 transposase is caused by non-productive multimerization. Genes Dev. 8, 2363–2374.
Zhou, M. and Reznikoff, W. S. (1997) Tn5 transposase mutants that alter DNA binding specificity. J. Mol. Biology 271, 362–373.
Zhou, M., Bhasin, A., and Reznikoff, W. S. (1998) Molecular genetic analysis of transposase-end sequence recognition: Cooperation of three adjacent base pairs in specific interaction with a mutant Tn5 transposase. J. Mol. Biology 276, 913–925.
Bhasin, A., Goryshin, I. Y., Steiniger-White, M., York, D., and Reznikoff, W. S. (2000) Characterization of a Tn5 pre-cleavage synaptic complex. J. Mol. Biology 302, 49–63.
Johnson, R. C. and Reznikoff, W. S. (1983) DNA sequences at the ends of transposon Tn5 required for transposition. Nature 304, 280–282.
Birren, B., Mancino, V., and Shizuya, H. Bacterial Artificial Chromosomes. In Genome Analysis: A Laboratory Manual (Birren, B., Green, E. D., Klapholz, S., Meyers, R. M., Riethman, H., and Roskams, J., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, vol. 3, 1999, pp. 274–279.
Siguret, V., Ribba, A. S., Cherel, G., Meyer, D., and Pietu, G. (1994) Effect of plasmid size on transformation efficiency by electroporation of Escherichia coli DH5 alpha. Biotechniques 16, 422–426.
Goryshin, I. Y., Miller, J. A., Kil, Y. V., Lanzov, V. A., and Reznikoff, W. S. (1998) Tn5/IS50 target recognition. Proc. Natl. Acad. Sci. USA 95, 10716–10721.
Meis, R. J. (2000) EZ::TN transposon insertions into target DNA in vitro are highly random. Epicentre Forum 7, 5.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Reznikoff, W.S., Goryshin, I.Y., Jendrisak, J.J. (2004). Tn5 as a Molecular Genetics Tool. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:083
Download citation
DOI: https://doi.org/10.1385/1-59259-755-6:083
Publisher Name: Humana Press
Print ISBN: 978-1-58829-007-6
Online ISBN: 978-1-59259-755-0
eBook Packages: Springer Protocols