Abstract
Detection of novel insertions and the ability to explore heterochromatin are two key goals in the study of mobile elements in Drosophila. The Southern blot analysis of individual flies can prove useful in both types of investigations, alone or in combination with genetic and cytological approaches. This chapter describes the protocol for carrying out such an analysis and provides some clues for the interpretation of the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kidwell, M. G. and Evgen’ev, M. B. (1999) How valuable are model organisms for transposable elements studies? Genetica 107, 103–111.
Di Franco, C, Pisano, C, Dimitri, P., Gigliotti, S., and Junakovic, N. (1989) Genomic distribution of copia-like transposable elements in somatic tissues and during development of D. melanogaster. Chromosoma 98, 402–410.
Petrov, D. A. and Hartl, D. L. (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol. Biol. Evol. 15, 293–302.
Junakovic, N., Di Franco, C., and Terrinoni, A. (1997) Evidence for a role of the host in regulating the activity of transposable elements in D. melanogaster: the case of Bari 1 elements in Charolles stock. Genetica 100, 149–154.
Alonso-Gonzalez, L., Dominquez, A., and Albornoz, J. (2003) Structural heterogenity and genomic distribution of Drosophila melanogaster LTR-retro-transposons. Mol. Biol. Evol. 20, 401–409.
Tower, J., Karpen, G., Craig, N., and Spradling, A. (1993) Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–359.
Newfeld, S. J. and Takaesu, N. (1999) Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 151, 177–187.
Potter, S., Brorein, W. J., Dunsmuir, J. P., and Rubin, G. M. (1979) Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415–427.
Pimpinelli, S., Berloco, M., Fanti, L., Dimitri, P., Bonaccorsi, S., Marchetti, E., et al. (1995) Transposable elements are stable components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92, 3804–3808.
Dej, K. J., Gerasimova, T., Corces, V. G., and Boeke, J. D. (1998) A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res. 26, 4019–4024.
Kassis, J. A., Noll, E., VanSickle, E. P., Odenwald, W. F., and Perrimon, N. (1992) Altering the insertional specificity of a Drosophila transposable element. Proc. Natl. Acad. Sci. USA 89, 1919–1923.
Pasyukova, E. G., Belyaeva, E. S., Ilyinskaya, L. E., and Gvozdev, V. A. (1988) Outcross dependent transposition of copia like mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212, 281–286.
Di Franco, C., Galluppi, D., and Junakovic, N. (1992) Genomic distribution of transposable elements among individuals of an inbred Drosophila line. Genetica 86, 1–11.
Garcia-Guerrero, M. P. and Biémont, C. (1995) Changes in the chromosomal insertion pattern of the copia element during the process of making the chromosomes homogeneous in Drosophila melanogaster. Mol. Gen. Genet. 246, 206–211.
Petrov, D. A., Schutzman, J. L., Hartl, D. L., and Lozovskaya, E. R. (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 92, 8050–8054.
Vasilyeva, L. A., Bubenshchikova, E. V., and Ratner, V. A. (1999) Heavy heat shock induced retrotransposon transposition in Drosophila. Genet. Res. 74, 111–119.
Glaser, R. L. and Spradling, A. C. (1994) Unusual properties of genomic DNA molecules spanning the euchromatic-heterochromatic junction of a Drosophila minichromosome. Nucleic Acids Res. 22, 5068–5075.
Leach, J. T. and Glaser, R. L. (1998) Quantitative hybridization of genomic DNA fractionated by pulsed-field gel electrophoresis. Nucleic Acids Res. 26, 4787–4789.
O’Neill, R. J. W., O’Neill, M. J., and Graves, J. A. M. (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72.
Labrador, M., Farre, M., Utzet, F., and Fontdevila, A. (1999) Interspecific hybridization increases transposition rates of Osvaldo. Mol. Biol. Evol. 16, 931–937.
Junakovic, N., Terrinoni, A., Di Franco, C., Vieira, C., and Loevenbruck, C. (1998) Accumulation of transposable elements in the heterochromatin of D. simulans and D. melanogaster. J. Mol. Evol. 46, 661–668.
Fortunati, D. and Junakovic, N. (1999) Evidence for genomic regulation of the telomeric activity in Drosophila melanogaster. Genetica 107, 95–102.
Woodruff, R. C., Thompson, J. N. Jr., Barker, J. S., and Huai, H. (1999) Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster. Genetica 107, 261–269.
Nikitin, A. G. and Shmookler Reis, R. J. (1997) Role of transposable elements in age-related genomic instability. Genet. Res. 69, 183–195.
Soriano, S., Fortunati, D., and Junakovic, N. (2002) Evidence for the host contribution in the definition of preferential insertion sites of the elements of Bari1 transposon family in Drosophila melanogaster. J. Mol. Evol. 55, 606–615.
Maside, X., Bartolome, C., Assimacopoulos, S., and Charlesworth, B. (2001) Rates of movement and distribution of transposable elements in Drosophila melanogaster: In situ hybridization vs Southern blotting data. Genet. Res. Camb. 78, 121–136.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Junakovic, N. (2004). Southern Blot Analysis of Individual Drosophila Flies. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:041
Download citation
DOI: https://doi.org/10.1385/1-59259-755-6:041
Publisher Name: Humana Press
Print ISBN: 978-1-58829-007-6
Online ISBN: 978-1-59259-755-0
eBook Packages: Springer Protocols