Skip to main content

Southern Blot Analysis of Individual Drosophila Flies

  • Protocol
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 260))

  • 1416 Accesses

Abstract

Detection of novel insertions and the ability to explore heterochromatin are two key goals in the study of mobile elements in Drosophila. The Southern blot analysis of individual flies can prove useful in both types of investigations, alone or in combination with genetic and cytological approaches. This chapter describes the protocol for carrying out such an analysis and provides some clues for the interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kidwell, M. G. and Evgen’ev, M. B. (1999) How valuable are model organisms for transposable elements studies? Genetica 107, 103–111.

    Article  PubMed  CAS  Google Scholar 

  2. Di Franco, C, Pisano, C, Dimitri, P., Gigliotti, S., and Junakovic, N. (1989) Genomic distribution of copia-like transposable elements in somatic tissues and during development of D. melanogaster. Chromosoma 98, 402–410.

    Article  PubMed  Google Scholar 

  3. Petrov, D. A. and Hartl, D. L. (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol. Biol. Evol. 15, 293–302.

    PubMed  CAS  Google Scholar 

  4. Junakovic, N., Di Franco, C., and Terrinoni, A. (1997) Evidence for a role of the host in regulating the activity of transposable elements in D. melanogaster: the case of Bari 1 elements in Charolles stock. Genetica 100, 149–154.

    Article  PubMed  CAS  Google Scholar 

  5. Alonso-Gonzalez, L., Dominquez, A., and Albornoz, J. (2003) Structural heterogenity and genomic distribution of Drosophila melanogaster LTR-retro-transposons. Mol. Biol. Evol. 20, 401–409.

    Article  PubMed  CAS  Google Scholar 

  6. Tower, J., Karpen, G., Craig, N., and Spradling, A. (1993) Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–359.

    PubMed  CAS  Google Scholar 

  7. Newfeld, S. J. and Takaesu, N. (1999) Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 151, 177–187.

    PubMed  CAS  Google Scholar 

  8. Potter, S., Brorein, W. J., Dunsmuir, J. P., and Rubin, G. M. (1979) Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415–427.

    Article  PubMed  CAS  Google Scholar 

  9. Pimpinelli, S., Berloco, M., Fanti, L., Dimitri, P., Bonaccorsi, S., Marchetti, E., et al. (1995) Transposable elements are stable components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92, 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  10. Dej, K. J., Gerasimova, T., Corces, V. G., and Boeke, J. D. (1998) A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res. 26, 4019–4024.

    Article  PubMed  CAS  Google Scholar 

  11. Kassis, J. A., Noll, E., VanSickle, E. P., Odenwald, W. F., and Perrimon, N. (1992) Altering the insertional specificity of a Drosophila transposable element. Proc. Natl. Acad. Sci. USA 89, 1919–1923.

    Article  PubMed  CAS  Google Scholar 

  12. Pasyukova, E. G., Belyaeva, E. S., Ilyinskaya, L. E., and Gvozdev, V. A. (1988) Outcross dependent transposition of copia like mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212, 281–286.

    Article  CAS  Google Scholar 

  13. Di Franco, C., Galluppi, D., and Junakovic, N. (1992) Genomic distribution of transposable elements among individuals of an inbred Drosophila line. Genetica 86, 1–11.

    Article  PubMed  Google Scholar 

  14. Garcia-Guerrero, M. P. and Biémont, C. (1995) Changes in the chromosomal insertion pattern of the copia element during the process of making the chromosomes homogeneous in Drosophila melanogaster. Mol. Gen. Genet. 246, 206–211.

    Article  Google Scholar 

  15. Petrov, D. A., Schutzman, J. L., Hartl, D. L., and Lozovskaya, E. R. (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 92, 8050–8054.

    Article  PubMed  CAS  Google Scholar 

  16. Vasilyeva, L. A., Bubenshchikova, E. V., and Ratner, V. A. (1999) Heavy heat shock induced retrotransposon transposition in Drosophila. Genet. Res. 74, 111–119.

    Article  PubMed  CAS  Google Scholar 

  17. Glaser, R. L. and Spradling, A. C. (1994) Unusual properties of genomic DNA molecules spanning the euchromatic-heterochromatic junction of a Drosophila minichromosome. Nucleic Acids Res. 22, 5068–5075.

    Article  PubMed  CAS  Google Scholar 

  18. Leach, J. T. and Glaser, R. L. (1998) Quantitative hybridization of genomic DNA fractionated by pulsed-field gel electrophoresis. Nucleic Acids Res. 26, 4787–4789.

    Article  PubMed  CAS  Google Scholar 

  19. O’Neill, R. J. W., O’Neill, M. J., and Graves, J. A. M. (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72.

    Article  Google Scholar 

  20. Labrador, M., Farre, M., Utzet, F., and Fontdevila, A. (1999) Interspecific hybridization increases transposition rates of Osvaldo. Mol. Biol. Evol. 16, 931–937.

    PubMed  CAS  Google Scholar 

  21. Junakovic, N., Terrinoni, A., Di Franco, C., Vieira, C., and Loevenbruck, C. (1998) Accumulation of transposable elements in the heterochromatin of D. simulans and D. melanogaster. J. Mol. Evol. 46, 661–668.

    Article  PubMed  CAS  Google Scholar 

  22. Fortunati, D. and Junakovic, N. (1999) Evidence for genomic regulation of the telomeric activity in Drosophila melanogaster. Genetica 107, 95–102.

    Article  PubMed  CAS  Google Scholar 

  23. Woodruff, R. C., Thompson, J. N. Jr., Barker, J. S., and Huai, H. (1999) Transposable DNA elements and life history traits: II. Transposition of P DNA elements in somatic cells reduces fitness, mating activity, and locomotion of Drosophila melanogaster. Genetica 107, 261–269.

    Article  PubMed  CAS  Google Scholar 

  24. Nikitin, A. G. and Shmookler Reis, R. J. (1997) Role of transposable elements in age-related genomic instability. Genet. Res. 69, 183–195.

    Google Scholar 

  25. Soriano, S., Fortunati, D., and Junakovic, N. (2002) Evidence for the host contribution in the definition of preferential insertion sites of the elements of Bari1 transposon family in Drosophila melanogaster. J. Mol. Evol. 55, 606–615.

    Article  PubMed  CAS  Google Scholar 

  26. Maside, X., Bartolome, C., Assimacopoulos, S., and Charlesworth, B. (2001) Rates of movement and distribution of transposable elements in Drosophila melanogaster: In situ hybridization vs Southern blotting data. Genet. Res. Camb. 78, 121–136.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Junakovic, N. (2004). Southern Blot Analysis of Individual Drosophila Flies. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:041

Download citation

  • DOI: https://doi.org/10.1385/1-59259-755-6:041

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-007-6

  • Online ISBN: 978-1-59259-755-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics