Abstract
Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with their respective host genomes, these parasitic DNAs have played important roles in the evolution of complex genetic networks. The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure and regulation to alterations in general genome architecture. Thus over evolutionary time these elements can be regarded as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on their intrinsic properties and features, mobile DNAs are widely applied at present as a technical “toolbox,” essential for studying a diverse spectrum of biological questions. In this chapter we aim to review both the evolutionary impact of TEs on genome evolution and their valuable and diverse methodological applications as the molecular tools presented in this book.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kapitonov, V. V. and Jurka, J. (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. USA 100, 6569–6574.
International Human Genome Sequencing Consortium (2001) A physical map of the human genome. Nature 409, 934–941.
Berg, D. E. and Howe, M. M., eds. Mobile DNA. American Society for Microbiology, Washington, DC, 1989.
Shapiro, J. A. The discovery and significance of mobile genetic elements. In Mobile Genetic Elements (Sherrat, D. J., ed.). IRL Press, Oxford, 1995, pp. 1–17.
McClintock, B. The Discovery and Characterization of Transposable Elements: The Collected Papers of B. McClintock. Garland, New York, 1987.
Fedoroff, N., Wessler, S., and Shure, M. (1983) Isolation of the transposable maize controlling element Ac and Ds. Cell 35, 243–251.
McDonald, J. F., ed. Transposable Elements and Evolution. Contemporary issues in Genetics and Evolution. Kluwer Academic Publishers, Dordrecht, Netherlands, 1993.
Britten, R. J. (1996) Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol. Phylogenet. Evol. 5, 13–17.
Kidwell, M. G. and Lisch, D. R. (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int. J. Org. Evolution 55, 1–24.
Taylor, A. (1963) Bacteriophage-induced mutation in E. coli. Proc. Natl. Acad. Sci. USA 50, 1043.
Adhya, S. L. and Shapiro, J. A. (1969) The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics 62, 231–247.
Shapiro, J. A. (1969) Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. Mol. Biol. 40, 93–105.
Shapiro, J. A. and Adhya, S. L. (1969) The galactose operon of E. coli K-12. II. A deletion analysis of operon structure and polarity. Genetics 62, 249–264.
Heffron, F. Tn3 and its relative. In Mobile Genetic Elements (Shapiro, J., ed.). Academic Press, New York, 1983, pp. 223–260.
Kleckner, N. Transposon Tn10. In Mobile Genetic Elements (Shapiro, J., ed.). Academic Press, New York, 1983, pp. 261–298.
Doolittle, W. F. and Sapienza, C. (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603.
Orgel, L. E. and Crick, F. H. C. (1980) Selfish DNA: the ultimate parasite. Nature 284, 604–607.
Dawkins, R., ed. The Selfish Gene. Oxford University Press, UK, 1976.
McDonald, J. F. (1995) Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10, 123–126.
Miller, W. J., McDonald, J. F., Nouaud, D., and Anxolabehere, D. (1999) Molecular domestication—more than a sporadic episode in evolution. Genetica 107, 197–207.
Kidwell, M. G. and Lisch, D. R. (2000) Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99.
Capy, P., Bazin, C., Higuet, D., and Langin, T., eds. Evolution and Impact of Transposable Elements. Kluwer Academic Publishers, Dordrecht, Netherlands, 1997.
Capy, P., Gasperi, G., Biémont, C., and Bazin, C. (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85, 101–106.
Charlesworth, B., Sniegowki, P., and Stephan, W. (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220.
Charlesworth, B., Langley, C. H., and Stephan, W. (1986) The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112, 947–962.
Charlesworth, B. and Langley, C. H. (1986) The evolution of self-regulated transposition of transposable elements. Genetics 112, 359–383.
Biemont, C., Vieira, C., Hoogland, C., Cizeron, G., Loevenbruck, C., Arnault, C., et al. (1997) Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans. Genetica 100, 161–166.
Dimitri, P., Arca, B., Berghella, L., and Mei, E. (1997) High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94, 8052–8057.
Dimitri, P. and Junakovic, N. (1999) Revising the selfish DNA hypothesis: New evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 15, 123–124.
Dorer, D. R. and Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1,002.
Dorer, D. R. and Henikoff, S. (1997) Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147, 1181–1190.
Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95, 13,073–13,078.
Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics 149, 2025–2037.
Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc. Natl. Acad. Sci. USA 95, 10,785–10,790.
Steinemann, M. and Steinemann, S. (1997) The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145, 261–266.
Miller, W. J., Nagel, A., Bachmann, J., and Bachmann, L. (2000) Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol. Biol. Evol. 17, 1597–1609.
Lim, J. (1988) Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85, 9,153–9,157.
Lim, J. and Simmons, M. J. (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16, 269–275.
Lyttle, T. W. and Haymer, D. S. (1992) The role of transposable element hobo in the origin of the endemic inversions in wild populations of Drosophila melanogaster. Genetica 83, 113–126.
Ladeveze, V., Aulard, S., Chaminade, N., Periquet, G., and Lemeunier, F. (1998) Hobo transposons causing chromosomal breakpoints. Proc. R. Soc. Lond. B. Biol. Sci. 265, 1157–1159.
Kusakabe, S., Harada, K., and Mukai, T. (1990) The rare inversion with a P element at the breakpoint maintained in a natural population of Drosophila melanogaster. Genetica 82, 111–115.
Caceres, M., Ranz, J. M., Barbadilla, A., Long, M., and Ruiz, A. (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285, 415–418.
Eggleston, W. B., Rim, N. R., and Lim, J. K. (1996) Molecular characterization of hobo-mediated inversions in Drosophila melanogaster. Genetics 144, 647–656.
Lim, J. K. and Simmons, M. J. (1994) Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16, 269–275.
Okada, N., Hamada, M., Ogiwara, I., and Ohshima, K. (1997) SINEs and LINEs share common 3′ sequences: a review. Gene 205, 229–243.
Kajikawa, M. and Okada, N. (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444.
Esnault, C., Maestre, J., and Heidmann, T. (2000) Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367.
Brosius, J. (1991) Retroposons—seeds of evolution. Science 251, 753.
Long, M. and Langley, C. H. (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95.
Wang, W., Zhang, J., Alvarez, C., Llopart, A., and Long, M. (2000) The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17, 1294–1301.
Viale, A., Courseaux, A., Presse, F., Ortola, C., Breton, C., Jordan, D., et al. (2000) Structure and expression of the variant melanin-concentrating hormone genes: Only PMCHL1 is transcribed in the developing human brain and encodes a putative protein. Mol. Biol. Evol. 17, 1,626–1,640.
Viale, A., Ortola, C., Richard, F., Vernier, P., Presse, F., Schilling, S., et al. (1998) Emergence of a brain-expressed variant melanin-concentrating hormone gene during higher primate evolution: a gene in search of a function. Mol. Biol. Evol. 15, 196–214.
Long, M. (2001) The evolution of novel genes. Curr. Opin. Genet. Dev. 11, 673–680.
Long, M., ed. Origin and Evolution of New Gene Functions. Genetica 118 (Special Issue). Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.
Miller, W. J., Hagemann, S., Reiter, E., and Pinsker, W. (1992) P element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc. Natl. Acad. Sci. USA 89, 4018–4022.
Nouaud, D. and Anxolabéhère, D. (1997) P element domestication: A stationary truncated P element may encode a 66-kDa repressor-like protein in the Drosophila montium species subgroup. Mol. Biol. Evol. 14, 1132–1144.
Biessmann, H., Valgeirsdottir, V., Lofsky, A., Chin, C., Ginther, B., Levis, R. W., et al. (1992) HeT-A, a transposable element specifically involved in “Healing” broken chromosome ends in Drosophila. Mol. Cell. Biol. 12, 3910–3918.
Levis, R. W., Ganesan, R., Houtchens, K., Tolar, L. A., and Sheen, F. M. (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75, 1083–1093.
Pardue, M. L. Drosophila telomeres: another way to end it all. In Telomeres (Greider, C. and Blackburn, E. H., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1995, pp. 339–370.
Nouaud, D., Boeda, B., Levy, L., and Anxolabéhère, D. (1999) A P element has induced intron formation in Drosophila. Mol. Biol. Evol. 1503–1510.
Agrawal, A., Eastman, Q. M., and Schatz, D. G. (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751.
Hiom, K., Melek, M., and Gellert, M. (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations [see comments]. Cell 94, 463–470.
Plasterk, R. (1998) Ragtime jumping. Nature 394, 718–719.
Kipling, D. and Warburton, P. E. (1997) Centromeres, CENP-B and Tigger too. Trends Genet. 13, 141–145.
Smit, A. F. and Riggs, A. D. (1996) Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93, 1443–1448.
Vieira, C. and Biemont, C. (1997) Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans. Mol. Biol. Evol. 14, 185–188.
Harada, K., Yukuhiro, K., and Mukai, T. (1990) Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87, 3248–3252.
Suh, D. S., Choi, E. H., Yamazaki, T., and Harada, K. (1995) Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol. Biol. Evol. 12, 748–758.
McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226, 792–801.
Grandbastien, M.-A., Lucas, H., Morel, J.-B., Mhiri, C., Vernhettes, S., and Casacuberta, J. M. (1997) The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense responses. Genetica 100, 241–252.
Grandbastien, M.-A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant. Sci. 3, 181–187.
Mhiri, C., Morel, J.-B., Vernhettes, S., Casacuberta, J. M., Lucas, H., and Grandbastien, M.-A. (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33, 257–266.
Melayah, D., Bonnivard, E., Chalhoub, B., Audeon, C., and Grandbastien, M.-A. (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J. 28, 159–168.
Hall, B. G. (1998) Adaptive mutagenesis: a process that generates almost exclusively beneficial mutations. Genetica 102–103, 109–125.
Hall, B. G. (1999) Mobile elements as activators of cryptic genes in E. coli. Genetica 107, 181–187.
Giraud, T. and Capy, P. (1996) Somatic activity of the mariner transposable element in natural populations of Drosophila simulans. Proc. R. Soc. Lond. B. Biol. Sci. 263, 1481–1486.
Viera, C. and Biémont, C. (1996) Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans. J. Mol. Evol. 42, 443–451.
Chakrani, F., Capy, P., and David, J. R. (1993) Developmental temperature and somatic excision rate of mariner transposable element in three natural populations of Drosophila simulans. Genet. Sel. Evol. 25, 121–132.
Hartl, D. L. Transposable element mariner in Drosophila species. In Mobile DNA (Berg, D. E. and Howe, M. M., eds.). American Society for Microbiology, Washington D.C., 1989, pp. 531–536.
Lampe, D. J., Grant, T. E., and Robertson, H. M. (1998) Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149, 179–187.
Mackay, T. F. C. (1984) Jumping genes meet abdominal bristles: hybrid dysgenesis-induced quantitative variation in Drosophila melanogaster. Genet. Res. 44, 231–237.
Currie, D. B., Mackay, T. F., and Partridge, L. (1998) Pervasive effects of P element mutagenesis on body size in Drosophila melanogaster. Genet. Res. 72, 19–24.
Lai, C. and Mackay, T. F. (1993) Mapping and characterization of P-element-induced mutations at quantitative trait loci in Drosophila melanogaster. Genet. Res. 61, 177–193.
Long, A. D., Lyman, R. F., Langley, C. H., and Mackay, T. F. (1998) Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149, 999–1017.
Long, A. D., Lyman, R. F., Morgan, A. H., Langley, C. H., and Mackay, T. F. (2000) Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154, 1255–1269.
Lyman, R. F., Lawrence, F., Nuzhudin, S. V., and Mackay, T. F. C. (1996) Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143, 277–292.
McDonald, J. F., Matyunina, L. V., Wilson, S., Jordan, I. K., Bowen, N. J., and Miller, W. J. (1997) LTR retrotransposons and the evolution of eukaryotic enhancers. Genetica 100, 3–13.
Bryan, G. J. and Hartl, D. L. (1988) Maternally inherited transposons excision in Drosophila simulans. Science 240, 215–217.
Bucheton, A. (1979) Non-Mendelian female sterility in Drosophila melanogaster: influence of aging and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93, 131–142.
Coen, E. S., Robbins, T. P., and Almeida, J. Consequences and mechanisms of transposition in Antirrhinum majus. In Mobile DNA (Berg, D. E. and Howe, M. M., eds.), American Society for Microbiology, Washington, DC, 1989, pp. 413–436.
Ho, Y. T., Weber, S. M., and Lim, J. K. (1993) Interacting hobo transposons in an inbred strain and interaction regulation in hybrids of Drosophila melanogaster. Genetics 134, 895–908.
Kidwell, M. G. (1981) Hybrid dysgenesis in Drosophila melanogaster: the genetics of cytotype determination in a neutral strain. Genetics 98, 275–290.
Spradling, A., Stern, D., Beaton, A., Rhem, E., Laverty, T., Mozden, N., et al. (1999) The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177.
Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R., and Engels, W. R. (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117.
Nassif, N., Penney, J., Pal, S., Engels, W., and Gloor, G. (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 13–25.
Rong, Y. and Golic, K. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018.
Henikoff, S. and Matzke, M. (1997) Exploring and explaining epigenetic effects. Trends Genet. 13, 293–295.
Yoder, J., Walsh, C., and Bestor, T. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340.
McDonald, J. F. (1998) Transposable elements, gene silencing and macroevolution. Trends Ecol. Evol. 13, 94–95.
Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.
Kelly, W. and Fire, A. (1998) Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456.
Ketting, R., Haverkamp, T., van Luenen, H., and Plasterk, R. (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141.
Tabara, H., Sarkissian, M., Kelly, W., Fleenor, J., Grishok, A., Timmons, L., et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132.
Kim, J. M., Vanguri, S., Boeke, J. D., Gabriel, A., and Voytas, D. F. (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464–478.
Wayne, M., Hackett, J., Dilda, C., Nuzhdin, S., Pasyukova, E., and Mackay, T. (2001) Quantitative trait locus mapping of fitness-related traits in Drosophila melanogaster. Genet. Res. 77, 107–116.
Bushman, F., ed. Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2002.
Capy, P., Anxolabéhère, D., and Langin, T. (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends Genet. 10, 7–12.
Cummings, M. P. (1994) Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. Trends Ecol. Evol. 9, 141–145.
Daniels, S. B., Peterson, K. R., Strausbaugh, L. D., Kidwell, M. G., and Chovnick, A. (1990) Evidence for horizontal transmission of the P element between Drosophila species. Genetics 124, 339–355.
Kidwell, M. G. (1992) Horizontal transfer of P elements and other short inverted repeat transposons. Genetica 83, 275–286.
Robertson, H. M. and Lampe, D. J. (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12, 850–862.
Hagemann, S., Haring, E., and Pinsker, W. (1996) Repeated horizontal transfer of P transposons between Scaptomyza pallida and Drosophila bifasciata. Genetica 98, 43–51.
Jordan, I. K., Matyunina, L. V., and McDonald, J. F. (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc. Natl. Acad. Sci. USA 96, 12,621–12,625.
Khillan, J. S., Overbeek, P. A., and Westphal, H. (1985) Drosophila P-element integration in the mouse. Dev. Biol. 109, 247–250.
Miller, L. H., Sakai, R. K., Romans, P., Gwadz, R. W., Kantoff, P., and Coon, H. G. (1987) Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779–781.
O’Brochta, D. A. and Handler, A. M. (1988) Mobility of P-elements in Drosophilids and non-Drosophilids. Proc. Natl. Acad. Sci. USA 85, 6052–6056.
Atkinson, P. W., Pinkerton, A. C., and O’Brochta, D. A. (2001) Genetic transformation systems in insects. Annu. Rev. Entomol. 46, 317–346.
Ivics, Z., Hackett, P. B., Plasterk, R. H., and Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510.
Auge-Gouillou, C., Hamelin, M. H., Demattei, M. V., Periquet, M., and Bigot, Y. (2001) The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol. Genet. Genomics 265, 51–57.
Sherman, A., Dawson, A., Mather, C., Gilhooley, H., Li, Y., Mitchell, R. F. D., et al. (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat. Biotechnol. 16, 1050–1053.
Matzke, M., Mette, M., Aufsatz, W., Jakowitsch, J., and Matzke, A. (1999) Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. Genetica 107, 271–287.
Sundararajan, P., Atkinson, P. W., and O’Brochta, D. A. (1999) Transposable element interactions in insects: cross mobilization of hobo and Hermes. Insect Molec. Biol. 8, 359–368.
Zhu, Y., Dai, J., Fuerst, P. G., and Voytas, D. F. (2003) Controlling integration specificity of a yeast retrotransposon. Proc. Natl. Acad. Sci. USA 100, 5891–5895.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Miller, W.J., Capy, P. (2004). Mobile Genetic Elements as Natural Tools for Genome Evolution. In: Miller, W.J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 260. Humana Press. https://doi.org/10.1385/1-59259-755-6:001
Download citation
DOI: https://doi.org/10.1385/1-59259-755-6:001
Publisher Name: Humana Press
Print ISBN: 978-1-58829-007-6
Online ISBN: 978-1-59259-755-0
eBook Packages: Springer Protocols