Advertisement

Rolling Circle Amplification for Sequencing Templates

  • Paul F. Predki
  • Chris Elkin
  • Hitesh Kapur
  • Jamie Jett
  • Susan Lucas
  • Tijana Glavina
  • Trevor Hawkins
Part of the Methods in Molecular Biology™ book series (MIMB, volume 255)

Abstract

Robust and reproducible isolation of high-quality templates is a requirement for successful DNA sequencing. To date, approaches for template generation have been limited to purification of biologically propagated M13 or plasmid-based templates, or in vitro amplification of such templates by polymerase chain reaction (PCR). In this chapter, we describe a protocol for a new approach to template generation: rolling circle amplification (RCA). We have found that templates produced through RCA yield more consistent and higher-quality sequence than identical templates generated from plasmid-prep methods. The protocol is simple, amenable to high throughput, and currently in use at the DOE Joint Genome Institute (Walnut Creek, CA) for the daily production of 30,000 sequencing templates.

Keywords

Roll Circle Amplification Template Generation Sheath Flow Tetraethylene Glycol Sodium Hypochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gilbert, W and Dressler, D. (1968) DNA replication: the rolling circle model. Cold Spring Harb. Symp. Quant. Biol. 33, 473–484.PubMedGoogle Scholar
  2. 2.
    Dressler, D. (1970) The rolling circle for phiX DNA replication. II. Synthesis of single-stranded circles. Proc. Natl. Acad. Sci. USA 67, 1934–1942.PubMedCrossRefGoogle Scholar
  3. 3.
    Schroder, C. H., Erben, E., and Kaerner, H. C. (1973) A rolling circle model of the in vivo replication of bacteriophagephiX174 replicative form DNA: different fate of two types of progeny replicative form. J. Mol. Biol. 79, 599–613.PubMedCrossRefGoogle Scholar
  4. 4.
    Doermann, A. H. (1973) T4 and the rolling circle model of replication. Annu. Rev. Genet. 7, 325–341.PubMedCrossRefGoogle Scholar
  5. 5.
    Kornberg, A. and Baker, T. A. (1992) DNA Replication. W. H. Freeman and Company, San Francisco.Google Scholar
  6. 6.
    Zhou, Y., Calciano, M., Hamann, S., Leamon, J. H., Strugnell, T., Christian, M. W., and Lizardi, P. M. (2001) In situ detection f messenger RNA using digoxigenin-labeled oligonucleotides and rolling circle amplification. Exp. Mol. Pathol. 70, 281–288.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhong, X. B., Lizardi, P. M., Huang, X. H., Bray-Ward, P. L., and Ward, D. C. (2001) Visualization of oligonuclotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl. Acad. Sci. USA 98, 3940–3945.PubMedCrossRefGoogle Scholar
  8. 8.
    Schweitzer, B., Wiltshire, S., Lambert, S., O’Malley, S., Kukanskis, K., Zhu, Z., Kingsmore, S. F, Lizardi, P. M., and Ward, D. C. (2000) Inaugural article: immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. USA 97, 10,113–10,119.PubMedCrossRefGoogle Scholar
  9. 9.
    Schweitzer, B. and Kingsmore, S. (2001) Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 12, 21–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Dean, F B., Nelson, J. R., Giesler, T. L., and Lasken, R. S. (2001) Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rollling circle amplification. Genome Res. 11, 1095–1099.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Paul F. Predki
    • 1
  • Chris Elkin
    • 1
  • Hitesh Kapur
    • 1
  • Jamie Jett
    • 1
  • Susan Lucas
    • 1
  • Tijana Glavina
    • 1
  • Trevor Hawkins
    • 1
  1. 1.Production Sequencing DepartmentDOE Joint Genome InstituteWalnut Creek

Personalised recommendations