Skip to main content

Isolation of Sea Urchin Sperm Plasma Membranes

  • Protocol
Germ Cell Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 253))

Abstract

Sea urchin spermatozoa provide an excellent model system for studying the signal transduction events underlying the acrosome reaction (1,2). Adults can be collected from tide pools, subtidally by SCUBA diving, or purchased from biological supply companies. When adults are injected with 0.5 M KCl, the semen comes out of five gonopores on the aboral surface and can be collected with a Pasteur pipet and stored on ice for up to 5 d. The most widely used species in cell research is the California purple sea urchin Strongylocentrotus purpuratus. Five milliliters of undiluted semen can be collected from a single male of 60-mL body volume. We have worked with as much as 100 mL of fresh semen for one membrane isolation. Each 1 μL of semen contains 4×107 spermatozoa and equals 100 μg of total sperm protein. No other animal model provides such high numbers of spermatozoa and so much plasma membrane at such a low cost in time, labor, and money.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vacquier, V. D. (1986) Handling, labeling, and fractionating sea urchin spermatozoa. Methods Cell Biol. 27, 15–40.

    Article  PubMed  CAS  Google Scholar 

  2. Darszon, A., Beltran, C., Felix, R., et al. (2001) Ion transport in sperm signaling. Dev. Biol. 240, 1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Cross, N. L. (1983) Isolation and electrophoretic characterization of the plasma membrane of sea urchin sperm. J. Cell Sci. 59, 13–25.

    PubMed  CAS  Google Scholar 

  4. Tombes, R. M., Brokaw, C. J., and Shapiro, B. M. (1987) Creatine kinase-dependent energy transport in sea urchin spermatozoa. Biophys. J. 52, 75–86.

    Article  PubMed  CAS  Google Scholar 

  5. Vacquier, V. D., Swanson, W. J., and Hellberg, M. E. (1995) What have we learned about sea urchin sperm bindin? Dev. Growth Differ. 37, 1–10.

    Article  CAS  Google Scholar 

  6. Hirohashi, N. and Vacquier, V. D. (2002) High molecular mass egg fucose sulfate polymer is required for opening both Ca2+ channels involved in triggering the sea urchin sperm acrosome reaction. J. Biol. Chem. 277, 1182–1189.

    Article  PubMed  CAS  Google Scholar 

  7. Vilela-Silva, A.-C. E. S., Castro, M. O., Valente, A.-P., et al. (2002) Sulfated fucans from the egg jellies of the closely related sea urchins Strongylocentrotus droebachiensis and S. pallidus ensure species-specific fertilization. J. Biol. Chem. 277, 379–387.

    Article  PubMed  CAS  Google Scholar 

  8. Hirohashi, N. and Vacquier, V. D. (2002) Egg sialoglycans increase intracellular pH and potentiate the acrosome reaction of sea urchin sperm. J. Biol. Chem. 277, 8041–8047.

    Article  PubMed  CAS  Google Scholar 

  9. Hirohashi, N. and Vacquier, V. D. (2002) Egg fucose sulfate polymer, sialoglycan, and speract all trigger the sea urchin sperm acrosome reaction. Biochem. Biophys. Res. Commun. 296, 833–839.

    Article  PubMed  CAS  Google Scholar 

  10. Wothe, D. D., Charbonneau, H., and Shapiro, B. M. (1990) The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication. Proc. Natl. Acad. Sci. USA 87, 5203–5207.

    Article  PubMed  CAS  Google Scholar 

  11. Garbers, D. L. (1989) Molecular basis of fertilization. Annu. Rev. Biochem. 58, 719–742.

    Article  PubMed  CAS  Google Scholar 

  12. Dangott, L. J., Jordan, J. E., Bellet, R. A., et al. (1989) Cloning of the mRNA for the protein that crosslinks to the egg peptide speract. Proc. Natl. Acad. Sci. USA 86, 2128–2132.

    Article  PubMed  CAS  Google Scholar 

  13. Mendoza, L. M., Nishioka, D., and Vacquier, V. D. (1993) A GPI-anchored sea urchin sperm membrane protein containing EGF domains is related to human uromodulin. J. Cell Biol. 121, 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  14. Gauss, R., Seifert, R., and Kaupp, U. B. (1998) Molecular identification of a hyperpolarization activated channel in sea urchin sperm. Nature 393, 583–587.

    Article  PubMed  CAS  Google Scholar 

  15. Moy, G. W., Mendoza, L. M., Schulz, J. R., et al. (1996) The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. J. Cell Biol. 133, 809–817.

    Article  PubMed  CAS  Google Scholar 

  16. Mengerink, K. J., Moy, G. W., and Vacquier, V. D. (2002) suREJ3, a polycystin-1 protein, is cleaved at the GPS domain and localizes to the acrosomal region of sea urchin sperm. J. Biol. Chem. 277, 943–948.

    Article  PubMed  CAS  Google Scholar 

  17. Su, Y.-H. and Vacquier, V. D. (2002) A flagellar K+-dependent Na+/Ca2+ exchanger keeps Ca2+ low in sea urchin spermatozoa. Proc. Natl. Acad. Sci. USA 99, 6743–6748.

    Article  PubMed  CAS  Google Scholar 

  18. Mengerink, K. J. and Vacquier, V. D. (2002). An ATP-binding cassette transporter is a major glycoprotein of sea urchin sperm membranes. J. Biol. Chem. 277, 40,729–40,734.

    Article  PubMed  CAS  Google Scholar 

  19. Schulz, J. R., Wessel, G. M., and Vacquier, V. D. (1997) The exocytotic regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev. Biol. 191, 80–87.

    Article  PubMed  CAS  Google Scholar 

  20. Schulz, J. R., Sasaki, J. D., and Vacquier, V. D. (1998). Increased association of synaptosome-associated protein of 25 kDa with syntaxin and vesicle-associated membrane protein following acrosomal exocytosis of sea urchin sperm. J. Biol. Chem. 273, 24,355–24,359.

    Article  PubMed  CAS  Google Scholar 

  21. Podell, S. B., Moy, G. W., and Vacquier, V. D. (1984) Isolation and characterization of a plasma membrane fraction from sea urchin sperm exhibiting species specific recognition of the egg surface. Biochim. Biophys. Acta 778, 25–37.

    Article  PubMed  CAS  Google Scholar 

  22. Ward, G. E., Garbers, D. L., and Vacquier, V. D. (1985) Effects of egg extracts on sperm guanylate cyclase. Science 227, 768–770.

    Article  PubMed  CAS  Google Scholar 

  23. Ward, G. E., Moy, G. W., and Vacquier, V. D. (1986) Phosphorylation of membrane-bound guanylate cyclase of sea urchin spermatozoa. J. Cell Biol. 103, 95–101.

    Article  PubMed  CAS  Google Scholar 

  24. Schulz, J. R. (1999) Sea urchin sperm acrosomal exocytosis: identification of acrosome reaction vesicle associated proteins. Ph.D. thesis, University of California, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mengerink, K.J., Vacquier, V.D. (2004). Isolation of Sea Urchin Sperm Plasma Membranes. In: Schatten, H. (eds) Germ Cell Protocols. Methods in Molecular Biology™, vol 253. Humana Press. https://doi.org/10.1385/1-59259-744-0:141

Download citation

  • DOI: https://doi.org/10.1385/1-59259-744-0:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-121-9

  • Online ISBN: 978-1-59259-744-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics