Skip to main content

Examination of the Axial Skeleton of Fetal Rodents

  • Protocol
Book cover Developmental Biology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 135))

Abstract

The axial skeleton represents one product of the metameric segregation of the mesoderm in the developing embryo. The mechanisms underlying this pattern formation remain poorly understood. Genetic alterations, either resulting from spontaneous mutation or as a result of xenobiotic exposure, may disrupt this patterning and lead to a variety of skeletal alterations. Chemical agents including valproic acid (1), retinoic acid (2), salicylate (3), and acetazolamide (4) have been shown to cause supernumerary ribs in rodents. Fewer agents cause a reduction in the number of ribs or vertebrae. Agents or conditions in the latter category include boric acid (5,6), arsenate (7), methanol (8), 2-chlorodeoxyadenosine (9), and hyperthermia (10). Effects on axial development have also been associated with changes in homeotic gene expression (1113) as well as deletion of the bmi-1 proto-oncogene (14). Posteriorization of Hoxa10 expression has been associated with lumbar ribs in mice following prenatal exposure to sali-cylate (15) as well as retinoic acid (2). Careful characterization of the morphology of the axial skeleton is critical in identifying homeotic shifts and other changes produced by xenobiotics or altered gene expression. Here we present our methods for preparing and examining rodent skeletons, including anatomical landmarks and a brief discussion of methods for analyzing and presenting these data.

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narotsky, M. G., Francis, E. Z., and Kavlock, R. J. (1994) Developmental toxicity and structure-activity relationships of aliphatic acids, including dose-response assessment of valproic acid in mice and rats. Fundam. Appl. Toxicol. 22, 251–265.

    Article  PubMed  CAS  Google Scholar 

  2. Kessel, M. (1992) Respecification of vertebral identities by retinoic acid. Development 115, 487–501.

    PubMed  CAS  Google Scholar 

  3. Wickramaratne, G. A. de S. (1988) The postnatal fate of supernumerary ribs in rat teratogenicity studies. J. Appl. Toxicol. 8, 91–94.

    Article  PubMed  CAS  Google Scholar 

  4. Beck, S. L. (1983) Assessment of adult skeletons to detect prenatal exposure to acetazolamide in mice. Teratology 28, 45–66.

    Article  PubMed  CAS  Google Scholar 

  5. Heindel, J. J., Price, C. J., and Schwetz, B. A. (1994) The developmental toxicity of boric acid in mice, rats, and rabbits. Environ. Health Perspect. 102(Suppl 7), 107–112.

    Article  PubMed  CAS  Google Scholar 

  6. Narotsky, M. G., Schmid, J. E., Andrews, J. E., and Kavlock, R. J. (1998) Effects of boric acid on axial skeletal development in rats. Biol. Trace Element Res. 66, 373–394.

    Article  CAS  Google Scholar 

  7. Beaudoin, A. R. (1974) Teratogenicity of sodium arsenate in rats. Teratology 10, 153–158.

    Article  PubMed  CAS  Google Scholar 

  8. Connelly, L. E. and Rogers, J. M. (1997) Methanol causes posteriorization of cervical vertebrae in mice. Teratology 55, 138–144.

    Article  PubMed  CAS  Google Scholar 

  9. Narotsky, M. G., Best, D. S., Guidici, D. L., Hamby, B. T., Knudsen, T. B., Kavlock, R. J., et al. (1998) 2-Chlorodeoxyadenosine-induced lumbar hernia in rats. Teratology 57, 245 [abstract].

    Google Scholar 

  10. Kimmel, C. A., Cuff, J. M., Kimmel, G. L., Heredia, D. J., Tudor, N., Silverman, P. M., et al. (1993) Skeletal development following heat exposure in the rat. Teratology 47, 229–242.

    Article  PubMed  CAS  Google Scholar 

  11. Kessel, M., Balling, R., and Gruss, P. (1990) Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell 61, 301–308.

    Article  PubMed  CAS  Google Scholar 

  12. Small, K. M. and Potter, S. S. (1993) Homeotic transformations and limb defects in Hox A11 mutant mice. Genes Dev. 7, 2318–2328.

    Article  PubMed  CAS  Google Scholar 

  13. Charité, J. W., de Graaff, W., Shen, S., and Deschamps, J. (1994) Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78, 589–601.

    Article  PubMed  Google Scholar 

  14. van der Lugt, N. M., Domen, J., Linders, K., van Roon, M., Robanus-Maandag, E., te Riele, H., et al. (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769.

    Article  PubMed  Google Scholar 

  15. Daston, G. P. and Overmann, G. J. (1996) Lumbar ribs associated with posteriorization of Hox a10 expression in salicylate-treated mouse embryos. Teratology 53, 85 [abstract].

    Article  Google Scholar 

  16. National Fire Protection Association (1996) NFPA 30: Flammable & Combustible Liquids Code, Quincy, MA.

    Google Scholar 

  17. Selby, P. B. (1987) A rapid method for preparing high quality alizarin stained skeletons of adult mice. Stain Technol. 62, 143–146.

    PubMed  CAS  Google Scholar 

  18. Dawson, A. B. (1926) A note on the staining of the skeleton of cleared specimens with alizarin red S. Stain Technol. 1, 123–124.

    Google Scholar 

  19. Kawamura, S., Hirohashi, A., Kato, T., and Yasuda, M. (1990) Bone-staining technique for fetal rat specimens without skinning and removing adipose tissue. Cong. Anom. 30, 93–95.

    Article  Google Scholar 

  20. Staples, R. E. and Schnell, V. L. (1964) Refinements in rapid clearing technic on the KOH-alizarin red S method for fetal bone. Stain Technol. 39, 61–63.

    PubMed  CAS  Google Scholar 

  21. Inouye, M. (1976) Differential staining of cartilage and bone in fetal mouse skeleton by alcian blue and alizarin red S. Cong. Anom. 16, 171–173.

    Google Scholar 

  22. Kimmel, C. A. and Trammell, C. (1981) A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol. 56, 271–273.

    PubMed  CAS  Google Scholar 

  23. Whitaker, J. and Dix, K. M. (1979) Double staining technique for rat foetus skeletons in teratological studies. Lab. Anim. 13, 309–310.

    Article  PubMed  CAS  Google Scholar 

  24. Miller, D. M. and Tarpley, J. (1996) An automated double staining procedure for bone and cartilage. Biotech. Histochem. 71, 79–83.

    Article  PubMed  CAS  Google Scholar 

  25. Greene, E. C. (1949) Gross anatomy, in The Rat in Laboratory Investigation (Farris, E. J. and Griffith, J. Q., Jr., eds.), Hafner, New York, pp. 24–50.

    Google Scholar 

  26. Yasuda, M. and Tsunetsugu, Y. (1996) Color Atlas of Fetal Skeleton of the Mouse, Rat and Rabbit. Ace Art Co., Ltd., Osaka, Japan, pp. 10, 26.

    Google Scholar 

  27. Kimmel, C. A. and Wilson, J. G. (1973) Skeletal deviations in rats: Malformations or variations. Teratology 8, 309–316.

    Article  PubMed  CAS  Google Scholar 

  28. Wise, L. D., Beck, S. L., Beltrame, D., Beyer, B. K., Chahoud, I., Clark, R. L., et al. (1997) Terminology of developmental abnormalities in common laboratory mammals (version 1). Teratology 55, 249–292.

    Article  PubMed  CAS  Google Scholar 

  29. Narotsky, M. G., Hamby, B. T., Best, D. S., and Kavlock, R. J. (1996) Effects of singleday boric acid treatment on axial skeletal development in rats. Teratology 53, 101 [abstract].

    Google Scholar 

  30. Haseman, J. K. and Kupper, L. L. (1979) Analysis of dichotomous response data from certain toxicological experiments. Biometrics 35, 281–293.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Narotsky, M.G., Rogers, J.M. (2000). Examination of the Axial Skeleton of Fetal Rodents. In: Walker, J.M., Tuan, R.S., Lo, C.W. (eds) Developmental Biology Protocols. Methods in Molecular Biology™, vol 135. Humana Press. https://doi.org/10.1385/1-59259-685-1:139

Download citation

  • DOI: https://doi.org/10.1385/1-59259-685-1:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-852-3

  • Online ISBN: 978-1-59259-685-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics