Skip to main content

Use of Inhibitors in the Study of MAPK Signaling

  • Protocol
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

  • 849 Accesses

Abstract

To survive and execute their functions, cells need to respond to many extracellular signals such as soluble molecules, neighboring cells, and physical changes in the environment. When interacting with the cells, these extracellular signals cause many intracellular changes, which are executed through target molecules and gene expression. Therefore, the extracellular signal must be transferred from the extracellular moiety to the nucleus through several communication lines, which generally transmit the signal through a series of protein phosphorylation processes (for more details see Chapter 1 and references therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson, G., Robinson, F., Beers Gibson, T., et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, Z., Gibson, T. B., Robinson, F., et al. (2001) MAP kinases. Chem. Rev. 101, 2449–2476.

    Article  PubMed  CAS  Google Scholar 

  3. Seger, R. and Krebs, E. G. (1995) The MAPK signaling cascade. FASEB J. 9, 726–735.

    PubMed  CAS  Google Scholar 

  4. Abe, M. K., Kuo, W. L., Hershenson, M. B., and Rosner, M. R. (1999) Extracellular signal-regulated kinase 7 (ERK7), a novel ERK with a C-terminal domain that regulates its activity, its cellular localization, and cell growth. Mol. Cell. Biol. 19, 1301–1312.

    PubMed  CAS  Google Scholar 

  5. Abe, M. K., Saelzler, M. P., Espinosa, R. 3rd, et al. (2002) ERK8, a new member of the mitogen-activated protein kinase family. J. Biol. Chem. 277, 16,733–16,743.

    Article  PubMed  CAS  Google Scholar 

  6. Wolf, I. and Seger, R. (2002) The mitogen-activated protein kinase signaling cascade: from bench to bedside. Isr. Med. Assoc. J. 4, 641–647.

    PubMed  CAS  Google Scholar 

  7. Hilger, R. A., Scheulen, M. E., and Strumberg, D. (2002) The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie 25, 511–518.

    Article  PubMed  CAS  Google Scholar 

  8. Sebolt-Leopold, J. S. (2000) Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 19, 6594–6599.

    Article  PubMed  CAS  Google Scholar 

  9. Gietema, J. A. and de Vries, E. G. (2002) Clinical cancer research 2002: new agents and therapies. Drug Resist. Update 5, 192–203.

    Article  CAS  Google Scholar 

  10. Dancey, J. and Sausville, E. A. (2003) Issues and progress with protein kinase inhibitors for cancer treatment. Nature Rev. 2, 296–310.

    Article  CAS  Google Scholar 

  11. Pages, G., Lenormand, P., L’Allemain, G., et al. (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90, 8319–8323.

    Article  PubMed  CAS  Google Scholar 

  12. Seger, R., Biener, Y., Feinstein, R., Hanoch, T., Gazit, A., and Zick, Y. (1995) Differential activation of mitogen-activated protein kinase and S6 kinase signaling pathways by 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin. Evidence for involvement of a TPA-stimulated protein-tyrosine kinase. J. Biol. Chem. 270, 28,325–28,330.

    Article  PubMed  CAS  Google Scholar 

  13. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689.

    Article  PubMed  CAS  Google Scholar 

  14. Kamakura, S., Moriguchi, T., and Nishida, E. (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 26,563–26,571.

    Article  PubMed  CAS  Google Scholar 

  15. Favata, M. F., Horiuchi, K. Y., Manos, E. J., et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18,623–18,632.

    Article  PubMed  CAS  Google Scholar 

  16. Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.

    Article  PubMed  CAS  Google Scholar 

  17. Sebolt-Leopold, J. S., Dudley, D. T., Herrera, R., et al. (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in-vivo. Nat. Med. 5, 810–816.

    Article  PubMed  CAS  Google Scholar 

  18. Lyons, J. F., Wilhelm, S., Hibner, B., and Bollag, G. (2001) Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer 8, 219–225.

    Article  PubMed  CAS  Google Scholar 

  19. Cuenda, A., Rouse, J., Doza, Y. N., et al. (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233.

    Article  PubMed  CAS  Google Scholar 

  20. English, J. M. and Cobb, M. H. (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol. Sci. 23, 40–45.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, J. C., Laydon, J. T., McDonnell, P. C., et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912.

    Article  PubMed  CAS  Google Scholar 

  23. Young, P. R., McLaughlin, M. M., Kumar, S., et al. (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J. Biol. Chem. 272, 12,116–12,121.

    Article  PubMed  CAS  Google Scholar 

  24. Eyers, P. A., Craxton, M., Morrice, N., Cohen, P., and Goedert, M. (1998) Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol. 5, 321–328.

    Article  PubMed  CAS  Google Scholar 

  25. Daum, G., Regenass, S., Sap, J., Schlessinger, J., and Fischer, E. H. (1994) Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation. J. Biol. Chem. 269, 10,524–10,528.

    PubMed  CAS  Google Scholar 

  26. Birkenkamp, K. U., Tuyt, L. M., Lummen, C., Wierenga, A. T., Kruijer, W., and Vellenga, E. (2000) The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway. Br. J. Pharmacol. 131, 99–107.

    Article  PubMed  CAS  Google Scholar 

  27. Haddad, J. J. (2001) VX-745. Vertex pharmaceuticals. Curr. Opin. Invest. Drugs 2, 1070–1076.

    CAS  Google Scholar 

  28. Bennett, B. L., Sasaki, D. T., Murray, B. W., et al. (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13,681–13,686.

    Article  PubMed  CAS  Google Scholar 

  29. Glicksman, M. A., Chiu, A. Y., Dionne, C. A., et al. (1998) CEP-1347/KT7515 prevents motor neuronal programmed cell death and injury-induced dedifferentiation in-vivo. J. Neurobiol. 35, 361–370.

    Article  PubMed  CAS  Google Scholar 

  30. Maroney, A. C., Finn, J. P., Connors, T. J., et al. (2001) Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem. 276, 25,302–25,308.

    Article  PubMed  CAS  Google Scholar 

  31. Roux, P. P., Dorval, G., Boudreau, M., et al. (2002) K252a and CEP1347 are neuroprotective compounds that inhibit mixed-lineage kinase-3 and induce activation of Akt and ERK. J. Biol. Chem. 277, 49,473–49,480.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, N., Wu, B., Powell, D., et al. (2000) Synthesis and structure-activity relationships of 3-cyano-4-(phenoxyanilino)quinolines as MEK (MAPKK) inhibitors. Bioorg. Med. Chem. Lett. 10, 2825–2828.

    Article  PubMed  CAS  Google Scholar 

  33. Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., and Sweatt, J. D. (1998) The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609.

    Article  PubMed  CAS  Google Scholar 

  34. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37–40.

    Article  PubMed  CAS  Google Scholar 

  35. Ahn, N. G., Nahreini, T. S., Tolwinski, N. S., and Resing, K. A. (2001) Pharmacologic inhibitors of MKK1 and MKK2. Methods Enzymol. 332, 417–431.

    Article  PubMed  CAS  Google Scholar 

  36. Vlahos, C., Matter, W., Hui, K., and Brown, R. (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248.

    PubMed  CAS  Google Scholar 

  37. Arcaro, A. and Wymann, M. P. (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297–301.

    PubMed  CAS  Google Scholar 

  38. Wymann, M. P., Bulgarelli-Leva, G., Zvelebil, M. J., et al. (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell. Biol. 16, 1722–1733.

    PubMed  CAS  Google Scholar 

  39. Toullec, D., Pianetti, P., Coste, H., et al. (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266, 15,771–15,781.

    PubMed  CAS  Google Scholar 

  40. Osherov, N. and Levitzki, A. (1994) Epidermal-growth-factor-dependent activation of the src-family kinases. Eur. J. Biochem. 225, 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  41. Hanke, J. H., Gardner, J. P., Dow, R. L., et al. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. J. Biol. Chem. 271, 695–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Shaul, Y.D., Seger, R. (2004). Use of Inhibitors in the Study of MAPK Signaling. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:113

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:113

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics