Skip to main content

The Chromosomes of Drosophila melanogaster

  • Protocol
Drosophila Cytogenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 247))

  • 2334 Accesses

Abstract

Drosophila have two basic forms of chromosomes—mitotic and polytene—that have vastly different morphologies and cellular roles. Polytene chromosomes are found in interphase nuclei of differentiated cells, being especially prominent in certain tissues of the larva and adult ovary. They are produced by repeated rounds of chromosome replication unhitched from nuclear division in a process termed “endoreplication.” Among the largest and most familiar of polytene chromosomes are those of the larval salivary gland, which can consist of >2000 sister chromatids tightly aligned in register. Such scaled-up chromosomes permit production of large quantities of gene products in a narrow developmental window. The highly compact mitotic chromosomes, found in proliferating tissues (e.g., the larval central nervous system [CNS], imaginal discs, ovaries, and testes), are genome-packaging vehicles that, in association with the spindle apparatus, function to transmit complete copies of the genome between mother and daughter nuclei. Meiotic chromosomes also can be categorized as mitotic chromosomes, and some of their unique properties are touched on in Chapters 25 (for recent reviews, see refs. 13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    1

    Phase dark regions of polytene chromosomes are bands; phase light regions are interbands. This terminology differs from the cytogenetic nomenclature adopted for banded human metaphase chromosomes, where by definition there are no interbands, only dark bands and light bands depending on the staining technique (157). The banded pattern is a fundamental morphological feature of the chromosome that can be seen in nonstained squashes by phase-contrast microscopy, and in non-fixed, DAPI-stained whole mounts by fluorescence microscopy (see refs. 158, 159). The pericentric heterochromatic regions of these chromosomes and the entire Y chromosome, if present, coalesce into a “chromocenter” from which the X and autosomal arms extend. In squash preparations, the single X chromosome of the male appears somewhat thinner and stains less intensely than the two X’s of the female. The chromocenter consists of compact α-heterchromatin, which appears as a single dense body in the middle of the chromocenter, surrounded by diffuse, netlike β-heterochromatin (17, 18, 158). However, α-heterchromatin of D. melanogaster is normally difficult to see with conventional staining (in constrast to D. virilis). This is remedied by a simple “differential” staining method developed by Belyaeva for phase-contrast microscopy (160)

References

  1. McKee, B. D. (1998) Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis in male Drosophila. Curr. Topics Dev. Biol. 37, 77–115.

    Article  CAS  Google Scholar 

  2. Maines, J. and Wasserman, S. (1998) Regulation and execution of meiosis in Drosophila males. Curr. Topics Dev. Biol. 37, 301–332.

    Article  CAS  Google Scholar 

  3. McKim, K. S., Jang, J. K., and Manheim, E. A. (2002) Meiotic recombination and chromosome segregation in Drosophila females. Annu. Rev. Genet. 36, 205–232.

    Article  PubMed  CAS  Google Scholar 

  4. Darlington, C. D. (1937) Recent Advances in Cytology. Blackiston, Philadelphia.

    Google Scholar 

  5. Sutton, W. S. (1903) The chromosomes in heredity. Biol. Bull. 4, 231–251.

    Article  Google Scholar 

  6. Peters, J. A. (1959) Classic Papers in Genetics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  7. Stevens, N. M. (1908) A study of the germ cells of certain Diptera, with reference to the heterochromosomes and the phenomenon of synapsis. J. Exp. Zool. 5, 359–374.

    Article  Google Scholar 

  8. Morgan, T.H. (1910) Sex limited inheritance in Drosophila. Science 32, 120–122.

    Article  PubMed  CAS  Google Scholar 

  9. Sturtevant, A. H. (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14, 43–59.

    Article  Google Scholar 

  10. Metz, C. W. (1914) Chromosome studies in the Diptera. I. A preliminary survey of five different types of chromosome groups in the genus Drosophila. J. Exp. Zool. 17, 45–49.

    Article  Google Scholar 

  11. Metz, C. W. (1916) Chromosome studies on the Diptera. II. The paired association of chromosomes in the Diptera, and its significance. J. Exp. Zool. 21, 213–279.

    Article  Google Scholar 

  12. Bridges, C. B. (1916) Non-disjunction as proof of the chromosome theory of heredity. Genetics 1, 1–52, 107-163.

    PubMed  CAS  Google Scholar 

  13. Muller, H. J. (1962) Studies in Genetics: The Selected Papers of H. J. Muller. Indiana University Press, Bloomington, IN.

    Google Scholar 

  14. Bridges, C. B. (1917) Deficiency. Genetics 2, 445–465.

    PubMed  CAS  Google Scholar 

  15. Bridges, C. B. (1919) Vermillion-deficiency. J. Gen. Physiol. 1, 645–656.

    Article  PubMed  CAS  Google Scholar 

  16. Muller, H. J. (1930) Types of visible variations induced by X-rays in Drosophila. J. Genet. 22, 299–334.

    Article  Google Scholar 

  17. Heitz, E. (1933) Die somatische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. Z. Zellforsch Mikr. Anat. 20, 237–287.

    Article  Google Scholar 

  18. Heitz, E. (1934) Uber α und β-heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. Biol. Zbl. 54, 588–609.

    Google Scholar 

  19. Zacharias, H. (1995) Emil Heitz (1892–1965): Chloroplasts, heterochromatin, and polytene chromosomes. Genetics 141, 7–14.

    PubMed  CAS  Google Scholar 

  20. Painter, T. S. (1931) A cytological map of the X-chromosome of Drosophila melanogaster. Anat. Record 51, 111 (abstract).

    Google Scholar 

  21. Painter, T. S. (1933) A new method for the study of chromosome rearrangements and plotting chromosome maps. Science 78, 585–586.

    Article  PubMed  CAS  Google Scholar 

  22. Painter, T. S. (1934) A new method for the study of chromosome aberrations and the plotting of chromosomes in Drosophila melanogaster. Genetics 19, 175–188.

    PubMed  CAS  Google Scholar 

  23. Painter, T. S. (1934) The morphology of the X-chromosomes in salivary glands of Drosophila melanogaster and a new type of chromosome map for this element. Genetics 19, 448–469.

    PubMed  CAS  Google Scholar 

  24. Painter, T. S. (1934) Salivary gland chromosomes and the attack on the gene. J. Heredity 25, 464–476.

    Google Scholar 

  25. Painter, T.S. (1971) Chromosomes and genes viewed from a perspective of fifty years research. Stadler Genet. Symp. 1, 33–42.

    Google Scholar 

  26. Kaufmann, B.P. (1934) Somatic mitoses of Drosophila melanogaster. J. Morph. 56, 125–155.

    Article  Google Scholar 

  27. Bridges, C. B. (1935) Salivary chromosome maps. J. Heredity 26, 60–64.

    Google Scholar 

  28. Muller, H. J. (1938) The remaking of chromosomes. Collecting Net 8, 182–195. [Reproduced in ref. 13, pp. 384-408.

    Google Scholar 

  29. Caspersson, T.O. (1950) Cell Growth and Cell Function: A Cytochemical Study. W.W. Norton, New York.

    Google Scholar 

  30. Cooper, K.W. (1959) Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of “heterochromatin.” Chromosoma 10, 535–588.

    Article  PubMed  CAS  Google Scholar 

  31. Pardue, M.-L. and Gall, J. G. (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64, 600–604.

    Article  PubMed  CAS  Google Scholar 

  32. Lindsley, D. L., Sandler, L., Baker, B. S., et al. (1972) Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71, 157–184.

    PubMed  CAS  Google Scholar 

  33. Rudkin, G. T. and Stollar, B. D. (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265, 472–473.

    Article  PubMed  CAS  Google Scholar 

  34. Ogilvie, M. B. and Choquette, C. J. (1981) Nettie Maria Stevens (1861–1912): Her life and contributions to cytogenetics. Proc. Am. Phil. Soc. 125, 292–311.

    CAS  Google Scholar 

  35. Brush, S. G. (1978) Nettie M. Stevens and the discovery of sex determination by chromosomes. ISIS 69, 163–172.

    PubMed  CAS  Google Scholar 

  36. Stevens, N. M. (1908) The chromosomes in Diabrotica vittata, Diabrotica soror, and Diabrotica 12-punctata: a contribution to the literature on heterochromosomes and sex determination. J. Exp. Zool. 5, 453–469.

    Article  Google Scholar 

  37. Kohler, R. E. (1994) Lords of the Fly: Drosophila Genetics and the Experimental Life, University of Chicago Press, Chicago.

    Google Scholar 

  38. Stevens, N. M. (1905) Studies in spermatogenesis with especial reference to the “accessory chromosome.” Carnegie Inst. Wash. Pub. 36.

    Google Scholar 

  39. McClung, C. E. (1902) The accessory chromosome—sex determinant? Biol. Bull. 3, 43–84.

    Article  Google Scholar 

  40. Bridges, C. B. (1925) Sex in relation to chromosomes and genes. Am. Nat. 59, 127–137.

    Article  Google Scholar 

  41. Gonzalez, C. and Glover, D. M. (1993) Techniques for studying mitosis in Drosophila, in The Cell Cycle: A Practical Approach (Fantes, P. and Brooks, R., eds.), IRL, Oxford, pp. 143–175.

    Google Scholar 

  42. Holmquist, G. (1975) Hoechst 33258 staining of Drosophila chromosomes. Chromosoma 49, 333–356.

    Article  PubMed  CAS  Google Scholar 

  43. Gatti, M., Pimpinelli, S., and Santini, G. (1976) Characterization of Drosophila heterochromatin. I. Staining and decondensation with Hoechst 33258 and quinacrine. Chromosoma 57, 351–375.

    Article  PubMed  CAS  Google Scholar 

  44. McKee, B. D. and Karpen, G. H. (1990) Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell 61, 61–72.

    Article  PubMed  CAS  Google Scholar 

  45. McKee, B. D., Habera, L., and Vrana, J. L. (1992) Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics 132, 529–544.

    PubMed  CAS  Google Scholar 

  46. Lohe, A. R., Hilliker, A. J., and Roberts, P. A. (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134, 1149–1174.

    PubMed  CAS  Google Scholar 

  47. Kogan, G. L., Epstein, V. N., Aravin, A. A., and Gvozdev, V. A. (2000) Molecular evolution of two paralogous tandemly repeated heterochromatic gene clusters linked to the X and Y chromosomes of Drosophila melanogaster. Mol. Biol. Evol. 17, 697–702.

    PubMed  CAS  Google Scholar 

  48. Carmena, M., Abad, J. P., Villasante, A., and Gonzalez, C. (1993) The Drosophila melanogaster dodecasatellite sequence is closely linked to the centromere and can form connections between sister chromatids during mitosis. J. Cell Sci. 105, 41–50.

    PubMed  CAS  Google Scholar 

  49. Basu, J., Bousbaa, H., Logarinho, E., et al. (1999) Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28.

    PubMed  CAS  Google Scholar 

  50. Gatti, M., Tanzarella, C., and Olivieri, G. (1974) Analysis of the chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster. Genetics 77, 701–719.

    PubMed  CAS  Google Scholar 

  51. Gatti, M. (1979) Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism. Proc. Natl. Acad. Sci. USA 76, 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  52. Heitz, E. (1928) Das Heterochromatin der Moose. Jb. Wiss. Bot. 69, 728–818.

    Google Scholar 

  53. Barigozzi, C., Dolfini, S., Fraccaro, M., Rezzonico Raimondi, G., and Tiepolo, L. (1966) In vitro study of the DNA replication patterns of somatic chromosomes of Drosophila melanogaster. Exp. Cell Res. 43, 231–234.

    Google Scholar 

  54. Hilliker, A. J. (1976) Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics 83, 765–782.

    PubMed  CAS  Google Scholar 

  55. Marchant, G. E. and Holm, D. G. (1988) Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120, 519–532.

    PubMed  CAS  Google Scholar 

  56. Schulze, S., Sinclair, D. A. R., Silva, E., et al. (2001) Essential genes in proximal 3L heterochromatin of Drosophila melanogaster. Mol. Gen. Genet. 264, 782–789.

    Article  PubMed  CAS  Google Scholar 

  57. Koryakov, D. E., Zhimulev, I. F., and Dimitri, P. (2002) Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. Genetics 160, 509–517.

    PubMed  CAS  Google Scholar 

  58. Gall, J. G., Cohen, E. H., and Polan, M. L. (1971) Repetitive DNA sequences in Drosophila. Chromosoma 33, 319–344.

    Article  PubMed  CAS  Google Scholar 

  59. Miklos, G. L. G., Yamamoto, M. T., Davies, J., and Pirrotta, V. (1988) Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85, 2051–2055.

    Article  PubMed  CAS  Google Scholar 

  60. Shevelyov, Y. Y., Balakireva, M. D., and Gvozdev, V. A. (1989) Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Chromosoma 98, 117–122.

    Article  Google Scholar 

  61. Bonaccorsi, S. and Lohe, A. (1991) Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics 129, 177–189.

    PubMed  CAS  Google Scholar 

  62. Shevelyov, Y. Y. (1993) Aurora, a non-mobile retrotransposon in Drosophila melanogaster heterochromatin. Mol. Gen. Genet. 239, 205–208.

    PubMed  CAS  Google Scholar 

  63. Carmena, M. and Gonzállez, C. (1995) Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103, 676–684.

    Article  PubMed  CAS  Google Scholar 

  64. Le, M.-H., Duricka, D., and Karpen, G. H. (1995) Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141, 283–303.

    PubMed  CAS  Google Scholar 

  65. Pimpinelli, S., Berloco, M., Fanti, L., et al. (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. 92, 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  66. Sun, X., Wahlstrom, J., and Karpen, G. H. (1997) Molecular structure of a functional Drosophila centromere. Cell 91, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  67. Tulin, A., Steward, D., and Spradling, A. C. (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev. 16, 2108–2119.

    Article  PubMed  CAS  Google Scholar 

  68. Rudkin, G. T. (1965) Nonreplicating DNA in giant chromosomes. Genetics 52(2), 470 (abstract).

    Google Scholar 

  69. Cryderman, D. E., Morris, E. J., Biessmann, H., Elgin, S. C. R., and Wallrath, L. L. (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J. 18, 3724–3735.

    Article  PubMed  CAS  Google Scholar 

  70. Czermin, B., Schotta, G., Hülsmann, B. B., et al. (2001) Physical and functional association of SU(VAR)3–9 and HDAC1 in Drosophila. EMBO Rep. 2, 915–919.

    Article  PubMed  CAS  Google Scholar 

  71. Schotta, G., Ebert, A., Krauss, V., et al. (2002) Central role of Drosophila SU(VAR)3–9 in histone H3–K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  72. Peacock, W., Lohe, A. R., Gerlach, W. L., Dunsmuir, P., Dennis, E. S., and Appels, R. (1977) Fine structure and evolution of DNA in heterochromatin. Cold Spring Harbor Symp. Quant. Biol. 42, 1121–1135.

    Google Scholar 

  73. Lohe, A. R. and Brutlag, D. L. (1986) Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 83, 696–700.

    Article  PubMed  CAS  Google Scholar 

  74. Koryakov, D. E., Alekseyenko, A. A., and Zhimulev, I. F. (1999) Dynamic organization of the β-heterochromatin in the Drosophila melanogaster polytene X chromosome. Mol. Gen. Genet. 260, 503–508.

    Article  PubMed  CAS  Google Scholar 

  75. Csink, A. K. and Henikoff, S. (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381, 529–531.

    Article  PubMed  CAS  Google Scholar 

  76. Abad, J. P., Carmena, M., Baars, S., et al. (1992) Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 89, 4663–4667.

    Article  PubMed  CAS  Google Scholar 

  77. Endow, S. A., Polan, M. L., and Gall, J. G. (1975) Satellite DNA sequences of Drosophila melanogaster. J. Mol. Biol. 96, 665–692.

    Article  PubMed  CAS  Google Scholar 

  78. Benos, P. V., Gatt, M. K., Ashburner, M., et al. (2000) From sequence to chromosome: the tip of the X chromosome of D. melanogaster. Science 287, 2220–2222.

    Article  PubMed  CAS  Google Scholar 

  79. Käs, E. and Laemmli, U. K. (1992) In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J. 11, 705–716.

    PubMed  Google Scholar 

  80. Laemmli, U. K., Käs, E., Poljak, L., and Adachi, Y. (1992) Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Gen. Dev. 2, 275–285.

    Article  CAS  Google Scholar 

  81. Gasser, S. M. and Laemmli, U. K. (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46, 521–530.

    Article  PubMed  CAS  Google Scholar 

  82. Rodriguez Alfageme, C., Rudkin, G. T., and Cohen, L. H. (1980) Isolation, properties and cellular distribution of D1, a chromosomal protein of Drosophila. Chromosoma 78, 1–31.

    Google Scholar 

  83. Reeves, R. and Nissen, M. S. (1990) The AT-binding domain of mammalian high mobility group I chromosomal proteins: a novel peptide motif for recognizing DNA structure. J. Biol. Chem. 265, 8573–8582.

    PubMed  CAS  Google Scholar 

  84. Aravind, L. and Landsman, D. (1998) AT-Hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 26, 4413–4421.

    Article  PubMed  CAS  Google Scholar 

  85. Aulner, N., Monod, C., Mandicourt, G., et al. (2002) The AT-hook protein D1 is essential for Drosophila melanogaster development and is implicated in position-effect variegation. Mol. Cell. Biol. 22, 1218–1232.

    Article  PubMed  CAS  Google Scholar 

  86. Török, T., Harvie, P. D., Buratovich, M., and Bryant, P. J. (1997) The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Genes Dev. 11, 213–225.

    Article  PubMed  Google Scholar 

  87. Platero, J. S., Csink, A. K., Quintanilla, A., and Henikoff, S. (1998) Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J. Cell Biol. 140, 1297–1306.

    Article  PubMed  CAS  Google Scholar 

  88. Török, T., Gorjánácz, M., Bryant, P. J., and Kiss, I. (2000) Prod is a novel DNA-binding protein that binds to the 1.686 g/cm3 10 bp satellite repeat of Drosophila melanogaster. Nucleic Acids Res. 28, 3551–3557.

    Article  PubMed  Google Scholar 

  89. Wilkins, R. C. and Liss, J. T. (1998) GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res. 26, 2672–2678.

    Article  PubMed  CAS  Google Scholar 

  90. Raff, J. W., Kellum, R., and Alberts, B. (1994) The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J. 13, 5977–5983.

    PubMed  CAS  Google Scholar 

  91. Cortés, A., Huertas, D., Fanti, L., et al. (1999) DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy. EMBO J. 18, 3820–3833.

    Article  PubMed  Google Scholar 

  92. Cortés, A. and Azorín, F. (2000) DDP1, a heterochromatin-associated multi-KH-domain protein of Drosophila melanogaster, interacts specifically with centromeric satellite DNA sequences. Mol. Cell. Biol. 20, 3860–3869.

    Article  PubMed  Google Scholar 

  93. Ferrer, N., Azorín, F., Villasante, A., Gutiérrez, C., and Abad, J. P. (1995) Centromeric dodeca-satellite DNA sequences form fold-back structures. J. Mol. Biol. 245, 8–21.

    PubMed  CAS  Google Scholar 

  94. Ortiz-Lombardía, M., Cortés, A., Huertas, D., Eritja, R., and Azorín, F. (1998) Tandem 5′-GA∶GA-3′ mismatches account for the high stability of the fold-back structures formed by the centromeric Drosophila dodeca-satellite. J. Mol. Biol. 277, 757–762.

    Article  PubMed  Google Scholar 

  95. Dervan, P. B. (2001) Molecular recognition of DNA by small molecules. Biorg. Med. Chem. 9, 2215–2235.

    Article  CAS  Google Scholar 

  96. Henikoff, S. and Vermaak, D. (2000) Bugs on drugs go GAGAA. Cell 103, 695–698.

    Article  PubMed  CAS  Google Scholar 

  97. Janssen, S., Durussel, T., and Laemmli, U. K. (2000) Chromatin opening of DNA satellites by targeted sequence-specific drugs. Mol. Cell 6, 999–1011.

    Article  PubMed  CAS  Google Scholar 

  98. Janssen, S., Cuvier, O., Müller, M., and Laemmli, U. K. (2000) Specific gain-and loss-of-function phenotypes induced by satellite-specific DNA-binding drugs fed to Drosophila melanogaster. Mol. Cell 6, 1013–1024.

    Article  PubMed  CAS  Google Scholar 

  99. Monod, C., Aulner, N., Cuvier, O., and Käs, E. (2002) Modification of position-effect variegation by competition for binding to Drosophila satellites. EMBO Rep. 3, 747–752.

    Article  PubMed  CAS  Google Scholar 

  100. Pimpinelli, S., Gatti, M., and De Marco, A (1975) Evidence for heterogeneity in heterochromatin of Drosophila melanogaster. Nature 256, 335–337.

    Article  PubMed  CAS  Google Scholar 

  101. The FlyBase Consortium (2002) The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 30, 106–108. Available at http://www.flybase.bio.indiana.edu.

    Article  Google Scholar 

  102. Dimitri, P. (1997) Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100, 85–93.

    Article  PubMed  CAS  Google Scholar 

  103. Eissenberg, J. C. and Hilliker, A. J. (2000) Versatility of conviction: heterochro-matin as both a repressor and an activator of transcription. Genetica 109, 19–24.

    Article  PubMed  CAS  Google Scholar 

  104. Engels, W. R. (1997) Invasions of P elements. Genetics 145, 11–15.

    PubMed  CAS  Google Scholar 

  105. Pinkster, W., Haring, E., Hagemann, S., and Miller, W. J. (2001) The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes. Chromosoma 110, 148–158.

    Article  Google Scholar 

  106. Mason, J. M. and Biessmann, H. (1995) The unusual telomeres of Drosophila. Trends Genet. 11, 58–62.

    Article  PubMed  CAS  Google Scholar 

  107. Biessmann, H. and Mason, J. M. (1997) Telomere maintenance without telomerase. Chromosoma 106, 63–69.

    Article  PubMed  CAS  Google Scholar 

  108. Pardue, M.-L. and DeBaryshe, P. G. (1999) Telomeres and telomerase: more than the end of the line. Chromosoma 108, 73–82.

    Article  PubMed  CAS  Google Scholar 

  109. Beissmann, H. and Mason, J. M. (1988) Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J. 7, 1081–1086.

    Google Scholar 

  110. Levis, R. W. (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58, 791–801.

    Article  PubMed  CAS  Google Scholar 

  111. Beissmann, H., Carter, S. B., and Mason, J. M. (1990) Chromosome ends in Drosophila without telomeric DNA sequences. Proc. Natl. Acad. Sci. USA 87, 1758–1761.

    Article  Google Scholar 

  112. Beissmann, H., Valgeirsdottir, K., Lofsky, A., et al. (1992) HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster. Mol. Cell. Biol. 12, 3910–3918.

    Google Scholar 

  113. Levis, R. W., Ganesan, R., Houtchens, K., Tolar, L. A., and Sheen, F.-M. (1993) Transposons in place of telomere repeats at a Drosophila telomere. Cell 75, 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  114. Sheen, F.-M. and Levis, R. W. (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc. Natl. Acad. Sci. USA 91, 12,510–12,514.

    Article  PubMed  CAS  Google Scholar 

  115. Walter, M. F., Jang, C., Kasravi, B., et al. (1995) DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104, 229–241.

    Article  PubMed  CAS  Google Scholar 

  116. Casacuberta, E. and Pardue, M.-L. (2002) Coevolution of the telomeric retrotransposons across Drosophila species. Genetics 161, 1113–1124.

    PubMed  CAS  Google Scholar 

  117. Agudo, M., Losada, A., Abad, J. P., Pimpinelli, S., Ripoll, P., and Villasante, A. (1999) Centromeres from telomeres? The centromeric regions of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A-and TART-related sequences. Nucleic Acids Res. 27, 3318–3324.

    Article  PubMed  CAS  Google Scholar 

  118. Rubin, G. M. (1978) Isolation of a telomeric DNA sequence from Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 42, 1041–1046.

    PubMed  CAS  Google Scholar 

  119. Mason, J. M., Haoudi, A., Konev, A. Y., Kurenova, E., Walter, M. F., and Biessmann, H. (2000) Control of telomere elongation and telomeric silencing in Drosophila melanogaster. Genetica 109, 61–70.

    Article  PubMed  CAS  Google Scholar 

  120. Karpen, G. H. and Spradling, A. C. (1992) Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics 132, 737–753.

    PubMed  CAS  Google Scholar 

  121. Golubovsky, M. D., Konev, A. Y., Walter, M. F., Biessmann, H., and Mason, J. M. (2001) Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics 158, 1111–1123.

    PubMed  CAS  Google Scholar 

  122. Pardue, M.-L. and DeBaryshe, P. G. (2000) Drosophila telomere transposons: genetically active elements in heterochromatin. Genetica 109, 45–52.

    Article  PubMed  CAS  Google Scholar 

  123. Fanti, L., Giovinazzo, G., Berloco, M., and Pimpinelli, S. (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527–538.

    Article  PubMed  CAS  Google Scholar 

  124. Danilevskaya, O. N., Traverse, K. L., Hogan, N. C., DeBaryshe, P. G., and Pardue, M.-L. (1999) The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol. Cell. Biol. 19, 873–881.

    PubMed  CAS  Google Scholar 

  125. Siriaco, G. M., Cenci, G., Haoudi, A., et al. (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160, 235–245.

    PubMed  CAS  Google Scholar 

  126. Karpen, G. H. and Allshire, R. C. (1997) The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496.

    Article  PubMed  CAS  Google Scholar 

  127. Williams, B. C., Murphy, T. D., Goldberg, M. L., and Karpen, G. H. (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet. 18, 30–37.

    Article  PubMed  CAS  Google Scholar 

  128. Maggert, K. A. and Karpen, G. H. (2001) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158, 1615–1628.

    PubMed  CAS  Google Scholar 

  129. Henikoff, S., Ahmad, K., Platero, J. S., and van Steensel, B. (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97, 716–721.

    Article  PubMed  CAS  Google Scholar 

  130. Henikoff, S., Ahmad, K., and Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  131. Blower, M. D., Sullivan, B. A., and Karpen, G. H. (2002) Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330.

    Article  PubMed  CAS  Google Scholar 

  132. Ahmad, K. and Henikoff, S. (2002) Histone H3 variants specify modes of chromatin assembly. Proc. Natl. Acad. Sci. USA 99, 16,477–16,484.

    Article  PubMed  CAS  Google Scholar 

  133. Steinemann, M. and Steinemann, S. (2000) Common mechanisms of Y chromosome evolution. Genetica 109, 105–111.

    Article  PubMed  CAS  Google Scholar 

  134. Brosseau, G. E. (1960) Genetic analysis of the male fertility factors on the Y chromosome of Drosophila melanogaster. Genetics 45, 257–274.

    PubMed  CAS  Google Scholar 

  135. Kennison, J. A. (1981) The genetic and cytological organization of the Y chromosome of Drosophila melanogaster. Genetics 98, 529–548.

    PubMed  CAS  Google Scholar 

  136. Kennison, J. A. (1983) Analysis of Y-linked mutations to male sterility in Drosophila melanogaster. Genetics 103, 219–234.

    PubMed  CAS  Google Scholar 

  137. Lindsley, D. L. and Zimm, G. G. (1992) The Genome of Drosophila melanogaster, Academic, San Diego, CA.

    Google Scholar 

  138. Stern, C. (1929) Untersuchungen über Aberrationen des Y-Chromosoms von Drosophila melanogaster. Z. Indukt. Abstammungs-Vererbungslehre 51, 253–353.

    Article  Google Scholar 

  139. Bonaccorsi, S., Pisano, C., Puoti, F., and Gatti, M. (1988) Y chromosome loops in Drosophila melanogaster. Genetics 120, 1015–1034.

    PubMed  CAS  Google Scholar 

  140. Kurek, R., Reugels, A. M., Lammermann, U., and Bunemann, H. (2000) Molecular aspects of intron evolution in dynein encoding mega-genes on the heterochromatic Y chromosome of Drosophila sp. Genetica 109, 113–123.

    Article  PubMed  CAS  Google Scholar 

  141. Berghella, L. and Dimitri, P. (1996) The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and transcriptionally active in the salivary gland chromocenter. Genetics 144, 117–125.

    PubMed  CAS  Google Scholar 

  142. Carvalho, A. B., Lazzaro, B. P., and Clark, A. G. (2000) Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptids. Proc. Natl. Acad. Sci. USA 97, 13,239–13,244.

    Article  PubMed  CAS  Google Scholar 

  143. Carvalho, A. B., Dobo, B. A., Vibranovski, M. D., and Clark, A. G. (2001) Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 13,225–13,230.

    Article  PubMed  CAS  Google Scholar 

  144. Hardy, R. W., Tokuyasu, K. T., and Lindsley, D. L. (1981) Analysis of spermatogenesis in Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. Chromosoma 83, 593–617.

    Article  PubMed  CAS  Google Scholar 

  145. Goldstein, L. S., Hardy, R. W., Lindsley, D. L. (1982) Structural genes on the Y chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 79, 7405–7409.

    Article  PubMed  CAS  Google Scholar 

  146. Locke, J., Podemski, L., Aippersbach, N., Kemp, H., and Hodgetts, R. (2000) A physical map of the polytenized region (101EF–102F) of chromosome 4 in Drosophila melanogaster. Genetics 155, 1175–1183.

    PubMed  CAS  Google Scholar 

  147. Larson, J., Chen, J.D., Rasheva, V., Rasmuson-Lestander, A., and Pirrota, V. (2001) Painting of fourth, a chromosome-specific protein in Drosophila. Proc. Natl. Acad. Sci. USA 98, 6273–6278.

    Article  Google Scholar 

  148. Sun, F.-L., Cuaycong, M. H., Craig, C. A., Wallrath, L. L., Locke, J., and Elgin, S. C. R. (2000) The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc. Natl. Acad. Sci. USA 97, 5350–5345.

    Google Scholar 

  149. Eissenberg, J. C., Morris, G. D., Reuter, G., and Hartnett, T. (1992) The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131, 345–352.

    PubMed  CAS  Google Scholar 

  150. Stuckenholz, C., Kageyama, Y., and Kuroda, M. I. (1999) Guilt by association: non-coding RNAs, chromosome-specific proteins and dosage compensation in Drosophila. Trends Genet. 15, 454–458.

    Article  PubMed  CAS  Google Scholar 

  151. Park, Y. and Kuroda, M. I. (2001) Epigenetic aspects of X-chromosome dosage compensation. Science 293, 1083–1085.

    Article  PubMed  CAS  Google Scholar 

  152. Zhimulev, I. F. (1996) Morphology and structure of polytene chromosomes. Adv. Genet. 34, 1–497.

    Article  PubMed  CAS  Google Scholar 

  153. Zhimulev, I. F. (1998) Polytene chromosomes, heterochromatin, and position effect variegation. Adv. Genet. 37, 1–566.

    Article  PubMed  CAS  Google Scholar 

  154. Zhimulev, I. F. (1999) Genetic organization of polytene chromosomes. Adv. Genet. 39, 1–599.

    Article  PubMed  CAS  Google Scholar 

  155. Daneholt, B. (2001) Packing and delivery of a genetic message. Chromosoma 110, 173–185.

    Article  PubMed  CAS  Google Scholar 

  156. Edgar, B.A. and Orr-Weaver, T.L. (2001) Endroreplication cell cycles: more for less. Cell 105, 297–306.

    Article  PubMed  CAS  Google Scholar 

  157. ISCN (1995) An International System for Human Cytogenetic Nomenclature (Mitelman, F., ed.), Karger, Basel.

    Google Scholar 

  158. Mathog, D., Hochstrasser, M., Gruenbaum, Y., Saumweber, H., and Sedat, J. W. (1984) Characteristic folding patterns of polytene chromosomes in Drosophila salivary gland nuclei. Nature 308, 414–421.

    Article  PubMed  CAS  Google Scholar 

  159. Hochstrasser, M. and Sedat, J. W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture. J. Cell Biol. 104, 1455–1470.

    Article  PubMed  CAS  Google Scholar 

  160. Koryakov, D. E., Belyaeva, E. S., Alekseyenko, A. A., and Zhimulev, I. F. (1996) Alpha and beta heterochromatin in polytene chromosome 2 of Drosophila melanogaster. Chromosoma 105, 310–319.

    Article  PubMed  CAS  Google Scholar 

  161. Hochstrasser, M., Mathog, D., Gruenbaum, Y., Saumweber, H. and Sedat, J. W. (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J. Cell Biol. 102, 112–123.

    Article  PubMed  CAS  Google Scholar 

  162. Koltzoff, N. K. (1934) The structure of the chromosomes in the salivary glands of Drosophila. Science 80, 312.

    Article  PubMed  CAS  Google Scholar 

  163. Beermann, W. and Pelling, C. (1965) H3-Thymidin-Markierung einzelner Chromatinden in Riesenchromosomen. Chromosoma 16, 1–21.

    Article  PubMed  CAS  Google Scholar 

  164. Ananiev, E. V. and Barsky, V. E. (1985) Elementary structures in polytene chromosomes of Drosophila melanogaster. Chromosoma 93, 104–112.

    Article  Google Scholar 

  165. Rodman, T. C. (1967) DNA replication in salivary gland nuclei of Drosophila melanogaster at successive larval and prepupal stages. Genetics 55, 375–386.

    PubMed  CAS  Google Scholar 

  166. Rudkin, G. T. (1969) Non replicating DNA in Drosophila. Genetics 61(Suppl.), 227–238.

    PubMed  CAS  Google Scholar 

  167. Welch, R. M. (1957) A developmental analysis of the lethal mutant l(2)gl of Drosophila melanogaster based on cytophotometric determination of nuclear desoxyribonucleic acid (DNA) content. Genetics 42, 544–559.

    PubMed  CAS  Google Scholar 

  168. Dennhofer, L. (1981) Complete replication of DNA in polytene nuclei of salivary glands of Drosophila melanogaster. Wilhelm Roux’ Arch. Dev. Biol. 190, 237–240.

    Article  Google Scholar 

  169. Iino, A. and Naguro, T. (1980) Polytene chromosomes observed by scanning electron microscope. Cytobios 27, 157–165.

    Google Scholar 

  170. Laird, C. D., Ashburner, M., and Wilkinson, L. (1980) Relationship between relative dry mass and average band width in regions of polytene chromosomes of Drosophila. Chromosoma 76, 175–189.

    Article  Google Scholar 

  171. Butterworth, F. M., Rasch, E. M., and Johnson, M. B. (1985) Is there a limit of in situ genomic replication in Drosophila? J. Exp. Zool. 234, 325–328.

    Article  PubMed  CAS  Google Scholar 

  172. Rasch, E. M. (1970) DNA cytophotometry of salivary gland nuclei and other tissue systems in dipteran larvae, in Introduction to Quantitative Cytochemistry (Wied, G. L. and Bahr, G. F., eds.), Academic, New York, vol. 2, pp. 357–397.

    Google Scholar 

  173. Lamb, M. J. (1982) The DNA content of polytene nuclei in midgut and Malpighian tubule cells of adult Drosophila melanogaster. Wilhelm Roux’ Arch. Dev. Biol. 191, 381–384.

    Article  CAS  Google Scholar 

  174. Butterworth, F. M. and Rasch, E. M. (1986) Adipose tissue of Drosophila melanogaster. VII. Distribution of nuclear DNA amounts along the anteriorposterior axis in the larval fat body. J. Exp. Zool. 239, 77–85.

    Article  PubMed  CAS  Google Scholar 

  175. Beerman, W. and Clever, U. (1964) Chromosome puffs. Sci. Am. 210, 50–58.

    Article  Google Scholar 

  176. Urata, Y., Parmelee, S. J., Agard, D. A., and Sedat, J. W. (1995) A three-dimensional structural dissection of Drosophila polytene chromosomes. J. Cell Biol. 131, 279–295.

    Article  PubMed  CAS  Google Scholar 

  177. Jamrich, M., Greenleaf, A.L., and Bautz, E.K.F. (1977) Localization of RNA polymerase in polytene chromosomes of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 74, 2079–83.

    Article  PubMed  CAS  Google Scholar 

  178. Hill, R. J., Watt, F., Wilson, C. M., et al. (1989) Bands, interbands and puffs in native Drosophila polytene chromosomes are recognized by a monoclonal antibody to an epitope in the carboxy-terminal tail of histone H1. Chromosoma 98, 411–421.

    Article  PubMed  CAS  Google Scholar 

  179. van Holde, K. and Zlatanova, J. (1996) What determines the folding of the chromatin fiber? Proc. Natl. Acad. Sci. USA 93, 10,548–10,555.

    Article  PubMed  Google Scholar 

  180. de Grauw, C. J., Avogadro, A., van den Heuvel, D. J., et al. (1998) Chromatin structure in bands and interbands of polytene chromosomes imaged by atomic force microscopy. Struct, J. Biol. 121, 2–8.

    Article  Google Scholar 

  181. Hammond, M. P. and Laird, C. D. (1985) Chromosome structure and DNA replication in nurse and follicle cells of Drosophila melanogaster. Chromosoma 91, 267–278.

    Article  PubMed  CAS  Google Scholar 

  182. Karpen, G. H. and Spradling, A.C. (1990) Reduced DNA polytenization of a minichromosome region undergoing position effect variegation in Drosophila. Cell 63, 97–107.

    Article  PubMed  CAS  Google Scholar 

  183. Zhang, P. and Spradling, A. C. (1995) The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 139, 659–670.

    PubMed  CAS  Google Scholar 

  184. Devlin, R. H., Holm, D. G., Morin, K. R., and Honda, B. M. (1990) Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome 33, 405–415.

    Article  PubMed  CAS  Google Scholar 

  185. Yamamoto, M., Mitchelson, A., Tudor, M., O’Hare, K., Davies, J. A., and Miklos, G, G. L. (1990) Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. Genetics 125, 821–832.

    PubMed  CAS  Google Scholar 

  186. Traverse, K. L. and Pardue, M.-L. (1989) Studies of He-T DNA sequences in the pericentric regions of Drosophila chromosomes. Chromosoma 97, 261–271.

    Article  PubMed  CAS  Google Scholar 

  187. Kuzin, F. E., Shilova, I. E., Lezzi, M., and Gruzdev, A. D. (2002) DNA in the centromeric heterochromatin of polytene chromosomes is topologically open. Chromosoma 10, 201–208.

    Article  CAS  Google Scholar 

  188. Leach, T. J., Chotlowski, H. L., Wotring, M.G., Dilwith, R. L., and Glaser, R. L. (2000) Replication of heterochromatin and structure of polytene chromosomes. Mol. Cell. Biol. 20, 6308–6316.

    Article  PubMed  CAS  Google Scholar 

  189. Glaser, R. L., Leach, T. J., and Ostrowski, S. E. (1997) The structure of hetero-chromatic DNA is altered in polyploid cells of Drosophila melanogaster. Mol. Cell. Biol. 17, 1254–1263.

    PubMed  CAS  Google Scholar 

  190. Lifschytz, E. (1983) Sequence replication and banding organization in the polytene chromosomes of Drosophila melanogaster. J. Mol. Biol. 164, 17–34.

    Article  PubMed  CAS  Google Scholar 

  191. Moshkin, Y. M., Alekseyenko, A. A., Semeshin, V. F., et al. (2001) The Bithorax Complex of Drosophila melanogaster: underreplication and morphology in polytene chromosomes. Proc. Natl. Acad. Sci. USA 98, 570–574.

    Article  PubMed  CAS  Google Scholar 

  192. Zhimulev, I. F., Semeshin, V. F., Kulichkov, V. A., and Belyaeva, E. S. (1982) Intercalary heterochromatin in Drosophila. I. Localization and general characteristics. Chromosoma. 87, 197–228.

    Article  Google Scholar 

  193. Alekseyenko, A. A., Demakova, O. V., Belyaeva, E. S., et al. (2002) Dosage compensation and intercalary heterochromatin in X chromosomes of Drosophila melanogaster. Chromosoma 111, 106–113.

    Article  PubMed  CAS  Google Scholar 

  194. Belyaeva, E. S., Zhimulev, I. F., Volkova, E. I., Alekseyenko, A. A., Moshkin, Y. M., and Koryakov, D. E. (1998) Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc. Natl. Acad. Sci. USA 95, 7532–7537.

    Article  PubMed  CAS  Google Scholar 

  195. Makunin, I. V., Volkova, E. I., Belyaeva, E. S., Nabirochkina, E. N., Pirrotta, V., and Zhimulev, I. F. (2002) The Drosophila Suppressor of Underreplication protein binds late-replicating regions of polytene chromosomes. Genetics 160, 1023–1034.

    PubMed  CAS  Google Scholar 

  196. Moshkin, Y. M., Belyakin, S. N., Rubtov, N. B., et al. (2002) Microdissection and sequence analysis of pericentric heterochromatin from the Drosophila melanogaster mutant Suppressor of Underreplication. Chromosoma 111, 114–125.

    Article  PubMed  CAS  Google Scholar 

  197. Gonzy, G., Pokholkova, G. V., Peronnet, F., et al. (2002) Isolation and characterization of novel mutations of the Broad-Complex, a key regulatory gene of ecdysone induction in Drosophila melanogaster. Insect Biochem. Mol. Biol. 32, 121–132.

    Article  PubMed  CAS  Google Scholar 

  198. Beermann, W. (1972) Chromomeres and genes, in Results and Problems in Cell Differentitation. Vol.4. Developmental Studies on Giant Chromosomes. Springer-Verlag, Berlin, pp. 1–30.

    Google Scholar 

  199. Sturtevant, A. H. and Novitski, E. (1941) The homologues of the chromosomal elements of the genus Drosophila. Genetics 26, 517–541.

    PubMed  CAS  Google Scholar 

  200. Judd, B. H. (1998) Genes and chromomeres: a puzzle in three dimensions. Genetics 150, 1–9.

    PubMed  CAS  Google Scholar 

  201. Hall, L. M., Mason, P. J., and Spierer, P. (1983) Transcripts, genes and bands in 315,000 base-pairs of Drosophila DNA. J. Mol. Biol. 169, 83–96.

    Article  PubMed  CAS  Google Scholar 

  202. Adams, M. D., Celniker, S. E., Holt, R. E., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  203. Benos, P. V., Gatt, M. K., Murphy, L., et al. (2001) From first base: the sequence of the tip of the X chromosome of Drosophila melanogaster. Genome Res. 11, 710–730.

    Article  PubMed  CAS  Google Scholar 

  204. Zhimulev, I. F. and Belyaeva, E. S. (1975) 3H-uridine labeling patterns in the Drosophila melanogaster salivary gland chromosomes X, 2R and 3L. Chromosoma 49, 219–311.

    Article  Google Scholar 

  205. Spellman, P. T. and Rubin, G. M. (2002) Evidence for large domains of similarly expressed genes in the Drosophila genome. J. Biol. 1, 5.1–5.8.

    Article  Google Scholar 

  206. DuPraw, E. J. and Rae, M, P. M. (1966) Polytene chromosome structure in relation to the “folded fibre” concept. Nature 212, 598–600.

    Article  PubMed  CAS  Google Scholar 

  207. Sorsa, V. (1974) Organization of replicative units in salivary gland chromosome bands. Hereditas 78, 298–302.

    Article  PubMed  CAS  Google Scholar 

  208. Laird, C.D. (1980) Structural paradox of polytene chromosomes. Cell 22, 869–874.

    Article  PubMed  CAS  Google Scholar 

  209. Spierer, A. and Spierer, P. (1984) Similar levels of polyteny in bands and interbands of Drosophila giant chromosomes. Nature 307, 176–178.

    Article  PubMed  CAS  Google Scholar 

  210. Liu, L. F. and Wang, J. C. (1987) Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 84, 7024–7027.

    Article  PubMed  CAS  Google Scholar 

  211. Leng, F. and McMacken, R. (2002) Potent stimulation of transcription-coupled DNA supercoiling by sequence-specific DNA-binding proteins. Proc. Natl. Acad. Sci. USA 99, 9139–9144.

    Article  PubMed  CAS  Google Scholar 

  212. Geyer, P. K. (1997) The role of insulator elements in defining domains of gene expression. Curr. Opin. Gene. Dev. 7, 242–248.

    Article  CAS  Google Scholar 

  213. Bell, A. C. and Felsenfeld, G. (1999) Stopped at the border: boundaries and insulators. Curr. Opin. Gene. Dev. 9, 191–198.

    Article  CAS  Google Scholar 

  214. Udvardy, A. (1999) Dividing the empire: boundary chromatin elements delimit the territory of enhancers. EMBO J. 18, 1–8.

    Article  PubMed  CAS  Google Scholar 

  215. Sun, F.-L. and Elgin, S. C. R. (1999) Putting boundaries on silence. Cell 99, 459–462.

    Article  PubMed  CAS  Google Scholar 

  216. Dorsett, D. (1999) Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr. Opin. Gene. Dev. 9, 505–514.

    Article  CAS  Google Scholar 

  217. Müller, J. (2000) Trancriptional control: the benefits of selective insulation. Curr. Biol. 10, R241–R244.

    Article  PubMed  Google Scholar 

  218. Herbert, A. and Rich, A. (1996) The biology of left-handed Z-DNA. J. Biol. Chem. 271, 11,595–11,598.

    Article  PubMed  CAS  Google Scholar 

  219. Oh, D.-B., Kim, Y.-G., and Rich, A. (2002) Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc. Natl. Acad. Sci. USA 99, 16,666–16,671.

    Article  PubMed  CAS  Google Scholar 

  220. Nordheim, A., Pardue, M. L., Lafer, E. M., Moller, A., Stollar, B. D., and Rich, A. (1981) Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294, 417–422.

    Article  PubMed  CAS  Google Scholar 

  221. Lancillotti, F., Lopez, M. C., Alonso, C., and Stollar, B. D. (1985) Locations of Z-DNA in polytene chromosomes. J. Cell Biol. 100, 1759–1766.

    Article  PubMed  CAS  Google Scholar 

  222. Waldmann, T., Eckerich, C., Baack, M., and Gruss, C. (2002) The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J. Biol. Chem. 277, 24,988–24,994.

    Article  PubMed  CAS  Google Scholar 

  223. Havas, K., Flaus, A., Phelan, M., et al. (2000) Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  224. Rykowski, M. C., Parmelee, S. J., Agard, D. A., and Sedat, J. W. (1988) Precise determination of the molecular limits of a polytene chromosome band: regulatory sequences for the Notch gene are in the interband. Cell 54, 461–472.

    Article  PubMed  CAS  Google Scholar 

  225. Vasquez, J. and Schedl, P. (2000) Deletion of an insulator element by the mutation facet-strawberry in Drosophila melanogaster. Genetics 155, 1297–1311.

    Google Scholar 

  226. Semeshin, V. F., Demakov, S. A., Perez Alonso, M., Belyaeva, E. S., Bonner, J. J., and Zhimulev, I. F. (1989) Electron microscopical analysis of Drosophila polytene chromosomes. V. Characteristics of structures formed by transposed DNA segments of mobile elements. Chromosoma 97, 396–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Henderson, D.S. (2004). The Chromosomes of Drosophila melanogaster . In: Henderson, D.S. (eds) Drosophila Cytogenetics Protocols. Methods in Molecular Biology, vol 247. Humana Press. https://doi.org/10.1385/1-59259-665-7:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-665-7:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-050-2

  • Online ISBN: 978-1-59259-665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics