Protein Extraction From Fungi

  • Paul D. Bridge
  • Tetsuo Kokubun
  • Monique S. J. Simmonds
Part of the Methods in Molecular Biology book series (MIMB, volume 244)


The fungi encompass a wide variety of organisms ranging from simple single-celled yeasts, such as Saccharomyces cerevisiae, to highly differentiated macrofungi that can be up to a meter or more in diameter (e.g., Rigidoporus ulmarius and Langermannia gigantea [1]). Fungi contain many different proteinaceous materials and these may comprise up to 31% of the dry weight of a mushroom (2). Protein extraction can be undertaken from almost any type of fungal material, including fresh fruiting bodies (3). This chapter will consider some methodology for protein extraction from yeasts and filamentous fungi growing in liquid laboratory culture.


Filamentous Fungus Extracellular Enzyme Starter Culture Malt Extract Agar Metarhizium Anisopliae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hawksworth, D. L., Kirk, P. M., Sutton, B. C., and Pegler, D. N. (1995) Ainsworth & Bisby’s Dictionary of the Fungi, 8th ed., CAB International, Wallingford, UK.Google Scholar
  2. 2.
    Rammeloo, J. and Walleyn, R. (1993) The Edible Fungi of Africa, South of the Sahara, National Botanic Garden of Belgium, Meise, Belgium.Google Scholar
  3. 3.
    Rosendahl, S. and Banke, S. (1998) Use of isozymes in fungal taxonomy and population studies, in Chemical Fungal Taxonomy (Frisvad, J. C., Bridge, P. D., and Arora, D. K., eds.), Marcel Dekker, New York, pp. 107–120.Google Scholar
  4. 4.
    Clarkson, J. H. (1992) Molecular biology of filamentous fungi used for biological control, in Applied Molecular Genetics of Filamentous Fungi (Kinghorn, J. R. and Turner, G., eds.), Blackie Academic and Professional, Glasgow, pp. 175–190.Google Scholar
  5. 5.
    St. Leger, R. J., Cooper, R. M., and Charnley, A. K. (1986) Cuticle-degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzymes. J. Gen. Microbiol. 132, 1509–1517.Google Scholar
  6. 6.
    Peberdy, J. F. (1990) Fungal cell walls—a review, in Biochemistry of Cell Walls and Membranes in Fungi (Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W., and Copping, L. G., eds.), Springer-Verlag, Berlin, pp. 5–30.Google Scholar
  7. 7.
    Cruickshank, R. H. and Wade, G. C. (1980) Detection of pectin enzymes in pectin acrylamide gels. Anal. Biochem. 107, 17–181.CrossRefGoogle Scholar
  8. 8.
    Elad, Y., Chet, I., and Henis, Y. (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28, 719–725.CrossRefGoogle Scholar
  9. 9.
    Paterson, R. R. M. and Bridge, P. D. (1994) Biochemical Techniques for Filamentous Fungi, CAB International, Wallingford, UK.Google Scholar
  10. 10.
    Mugnai, L., Bridge, P. D., and Evans, H. C. (1989) A chemotaxonomic evaluation of the genus Beauveria. Mycol. Res. 92, 199–209.CrossRefGoogle Scholar
  11. 11.
    Jun, Y., Bridge, P. D., and Evans, H. C. (1991) An integrated approach to the taxonomy of the genus Verticillium. J. Gen. Microbiol. 137, 1437–1444.Google Scholar
  12. 12.
    Monte, E., Bridge, P. D., and Sutton, B. C. (1990) Physiological and biochemical studies in Coelomycetes. Phoma. Studies Mycol. 32, 21–28.Google Scholar
  13. 13.
    Barth, M. G. and Bridge, P. D. (1989) 4-Methylumbelliferyl substituted compounds as fluorogenic substrates for fungal extracellular enzymes. Lett. Appl. Microbiol. 9, 177–179.CrossRefGoogle Scholar
  14. 14.
    Smith, D. and Onions, A. H. S. (1994) The Preservation and Maintenance of Living Fungi, 2nd ed., CAB International, Wallingford, UK.Google Scholar
  15. 15.
    O’Brien, M. and Colwell, R. R. (1987) A rapid test for chitinase activity that uses 4-methy-lumbelliferyl-N-acetyl-β-d-glucosaminide. Appl. Environ. Microbiol. 53, 1718–1720.Google Scholar
  16. 16.
    Conti, S. F. and Naylor, H. B. (1959) Electron microscopy of ultrathin sections of Schizosac-charomyces octosporus. I. Cell division. J. Bacteriol. 78, 868–877.PubMedGoogle Scholar
  17. 17.
    Filtenborg, O., Frisvad, J. C., and Thrane, U. (1990) The significance of yeast extract composition on secondary metabolite production in Penicillium, in Modern Concepts in Penicillium and Aspergillus Classification (Samson, R. A. and Pitt, J. I., eds.), Plenum, New York, pp. 433–441.Google Scholar
  18. 18.
    Petäistö, R. L., Rissanen, T. E., Harvima, R. J., and Kajander, E. O. (1994) Analysis of the protein of Gremmeniella abietina with special reference to protease activity. Mycologia 86, 242–249.CrossRefGoogle Scholar
  19. 19.
    Hennebert, G. L. and Vancanneyt, M. (1998) Proteins in fungal taxonomy, in Chemical Fungal Taxonomy (Frisvad, J. C., Bridge, P. D., and Arora, D. K., eds.), Marcel Dekker, New York, pp. 77–106.Google Scholar
  20. 20.
    Kim, W. K. and Howes, N. K. (1987) Localization of glycopeptides and race-variable polypeptides in uredosporling walls of Puccinia graminis tritici; affinity to concalvin A, soybean agglutinin, and Lotus lectin. Can. J. Bot. 65, 1785–1791.CrossRefGoogle Scholar
  21. 21.
    Osherov, N. and May, G. S. (1998) Optimization of protein extraction from Aspergillus nidulans for gel electrophoresis. Fung. Gen. Newslett. 45, 38–40.Google Scholar
  22. 22.
    Barnett, J. A., Payne, R. W., and Yarrow, D. (1990) Yeasts: Characteristics and Identification, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  23. 23.
    St. Leger, R. J., Staples, R. C., and Roberts, D. W. (1991) Changes in translatable mRNA species associated with nutrient deprivation and protease synthesis in Metarhizium anisopliae. J. Gen. Microbiol. 137, 807–815.Google Scholar
  24. 24.
    Kim, K. K., Fravel, D. R., and Papavizas, G. C. (1990) Production, purification and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus. Can. J. Microbiol. 36, 199–205.CrossRefGoogle Scholar
  25. 25.
    Hien, N. H. and Fleet, G. H. (1983) Separation and characterization of six (1→3)-β-glucanases from Saccharomyces cerevisiae. J. Bacteriol. 156, 1204–1213.PubMedGoogle Scholar
  26. 26.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Vol. 3.Google Scholar
  27. 27.
    Messner, R. and Kubicek, C. P. (1990) Synthesis of cell wall glucan, chitin and protein by regenerating protoplasts and mycelia of Trichoderma reesei. Can. J. Microbiol. 36, 211–217.CrossRefGoogle Scholar
  28. 28.
    Schnaitman, C. A. (1981) Cell fractionation, in Manual of Methods for General Bacteriology (Gerhardt, P., Murray, R. G. E., Costilow, R. N., et al., eds.), American Society for Microbiology, Washington, DC, pp. 52–61.Google Scholar
  29. 29.
    Kim, W. K., Rohringer, R., and Chong, J. (1982) Sugar and amino acid composition of macromolecular constituents released from walls of uredosporlings of Puccinia graminis triticii. Can. J. Plant Pathol. 4, 317–327.CrossRefGoogle Scholar
  30. 30.
    Fèvre, M. (1979) Glucanase, glucan synthases and wall growth in Saprolegnia monoica, in Fungal Walls and Hyphal Growth (Burnett, J. H. and Trinci, A. P. J., eds.), Cambridge University Press, British Mycological Society Symposium 2, Cambridge, pp. 225–263.Google Scholar
  31. 31.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  32. 32.
    Pritchett, T. J. (1996) Capillary isoelectric focusing of proteins. Electrophoresis 17, 1195–1201.PubMedCrossRefGoogle Scholar
  33. 33.
    Foret, F., Szoko, E., and Karger, B. L. (1993) Trace analysis of proteins by capillary zone electrophoresis with on-column transient isotachophoretic preconcentration. Electrophoresis 14, 417–428.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Paul D. Bridge
    • 1
    • 2
  • Tetsuo Kokubun
    • 3
  • Monique S. J. Simmonds
    • 3
  1. 1.School of Biological and Chemical SciencesUniversity of LondonLondonUK
  2. 2.Mycology SectionRoyal Botanic GardensRichmondUK
  3. 3.Biological Interactions SectionRoyal Botanic GardensRichmondUK

Personalised recommendations