Advertisement

Cell-Type Specific Responses of the Nervous System to Lead

  • Evelyn Tiffany-Castiglioni
  • Yongchang Qian
Protocol
  • 333 Downloads
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Cells that make up the nervous system interact in complex, dynamic structural and biochemical contexts to generate organ function. A neurotoxicant that alters the activities of a particular cell type also induces secondary changes in the interactions between this cell and other cells. All types of cell in the nervous system are potential primary or secondary targets for damage by neurotoxic substances. The purpose of this chapter is to examine the reported cell-specific effects of an archetypal environmental neurotoxicant, inorganic lead (Pb), on neurons and neuroglia. Pb is an archetype in the broad sense that, like several environmental neurotoxicants, it affects multiple cell types, employs multiple mechanisms of toxic action, produces sublethal functional impairment to cells at low doses, is widespread in the environment, and is metabolically nonessential. Pb was perhaps the earliest environmental contaminant to be recognized as a neurotoxicant and is the most thoroughly studied to date in vitro. Pb neurotoxicologists have charted their own courses, often guided by progress in neuroscience and cell biology and sometimes pointing out new directions for neurobiology. The approaches that Pb neurotoxicologists have taken or not taken, the roads, paths, and blind alleys, will be discussed in this chapter, in the hope that telling the story will facilitate in vitro studies with other neurotoxicants. This work will be limited to effects of Pb on neurons, astroglia, and myelinating glia (oligodendroglia and Schwann cells), as the effects of Pb on microglia are virtually unstudied.

Keywords

Nerve Growth Factor Schwann Cell Myelin Basic Protein Blood Lead Level HN25 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ATSDR (2001) CERCLA List of Priority Hazardous Substances, ATSDR Information Center, Division of Toxicology, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA.Google Scholar
  2. 2.
    Banks, E. C., Ferretti, L. E., and Shucard, D. W. (1997) Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology 18, 237–282.PubMedGoogle Scholar
  3. 3.
    Markowitz, M. (2000) Lead poisoning: a disease for the new millennium. Curr. Probl. Pediatr. 30, 62–70.PubMedGoogle Scholar
  4. 4.
    Tong, S., von Schirnding, Y. E., and Prapamontol, T. (2000) Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Organ. 78, 1068–1077.PubMedGoogle Scholar
  5. 5.
    Needleman, H. L., Gunnoe, C., Leviton, A., et al. (1979) Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N. Engl. J. Med. 300, 689–695.PubMedGoogle Scholar
  6. 6.
    Stiles, K. M. and Bellinger, D. C. (1993) Neuropsychological correlates of low-level lead exposure in school-age children: a prospective study. Neurotoxicol. Teratol. 15, 27–35.PubMedGoogle Scholar
  7. 7.
    Schwartz, J. (1994) Low-level lead exposure and children’s IQ: a meta-analysis and search for threshold. Environ. Res. 65, 42–6555.PubMedGoogle Scholar
  8. 8.
    Needleman, H. L., Riess, J. A., Tobin, M. J., Biesecker, G. E., and Greenhouse, J.B. (1996) Bone lead levels and delinquent behavior. J. Am. Med. Assoc. 275, 363–369.Google Scholar
  9. 9.
    Centers for Disease Control and Prevention (1991) Preventing lead poisoning in young children: a statement by the Centers for Disease Control. US Department of Health and Human Services, Atlanta, GA.Google Scholar
  10. 10.
    United States Environmental Protection Agency (2000) America’s Children and the Environment: A First View of Available Measures, US EPA, Research Triangle Park, NC.Google Scholar
  11. 11.
    Duckett, S., Galle, P., and Kradin, R. (1977) The relationship between Parkinson syndrome and vascular siderosis: an electron microprobe study. Ann. Neurol. 2, 225–229.PubMedGoogle Scholar
  12. 12.
    Gorell, J. M., Johnson, C. C., Rybicki, B. A., et al. (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20, 239–248.PubMedGoogle Scholar
  13. 13.
    Gorell, J. M., Rybicki, B. A., Johnson, C. C., and Peterson, E. L. (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18, 303–308.PubMedGoogle Scholar
  14. 14.
    Kuhn, W., Winkel, R., Woitalla, D., Meves, S., Przuntek, H., and Müller T. (1998) High prevalence of parkinsonism after occupational exposure to leadsulfate batteries. Neurology 50, 885–1886.Google Scholar
  15. 15.
    Crofton, K. M., Taylor, D. H., Bull, R. J., Sivulka, D. J., and Lutkenhoff, S. D. (1980) Developmental delays in exploration and locomotor activity in male rats exposed to low level lead. Life Sci. 26, 823–831.PubMedGoogle Scholar
  16. 16.
    Alfano, D. P. and Petit, T. L. (1982) Neonatal lead exposure alters the dendritic development of hippocampal dentate granule cells. Exp. Neurol. 75, 275–288.PubMedGoogle Scholar
  17. 17.
    McCauley, P. T., Bull, R. J., Tonti, A. P., et al. (1982) The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. Toxicol. Environ. Health 10, 639–651.Google Scholar
  18. 18.
    Cookman, G. R., King, W., and Regan, C. M. (1987) Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule. J. Neurochem. 49, 399–403.PubMedGoogle Scholar
  19. 19.
    Reuhl, K. R., Rice, D. C, Gilbert, S. G., and Mallett, J. (1991) Effects of chronic developmental lead exposure on monkey neuroanatomy: visual system. Toxicol. Appl. Pharmacol. 99, 501–509.Google Scholar
  20. 20.
    Patrick, G. W. and Anderson, W. J. (1995) Dendritic alterations of cortical pyramidal neurons in postnatally lead-exposed kittens: a Golgi-Cox study. Dev. Neurosci. 17, 219–229.PubMedGoogle Scholar
  21. 21.
    Kern, M. and Audesirk, G. (1995) Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation. Toxicol. Appl. Pharmacol. 134, 111–123.PubMedGoogle Scholar
  22. 22.
    Ishihara, K., Alkondon, M., Montes, J. G., and Albuquerque, E. X. (1995) Ontogenically related properties of NMDA receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead. J. Pharm. Exp. Ther. 273, 1459–1470.Google Scholar
  23. 23.
    Cline, H. T., Witte, S., and Jones, K. W. (1996) Low lead levels stunt neuronal growth in a reversible manner. Proc. Natl. Acad. Sci. USA 93, 9915–9920.PubMedGoogle Scholar
  24. 24.
    Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1996) Chronic developmental lead exposure increases threshold for long-term potentiation in the rat dentate gyrus in vivo. Brain Res. 736, 118–124.PubMedGoogle Scholar
  25. 25.
    Gilbert, M. E. and Mack, C. M. (1998) Chronic developmental lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Res. 789, 139–149.PubMedGoogle Scholar
  26. 26.
    Omelchenko, I. A., Nelson, C. S., Marino, J. L., and Allen, C. N. (1996) The sensitivity of NMDA receptors to lead inhibition is dependent on the receptor subunit composition. J. PET 278, 15–20.Google Scholar
  27. 27.
    Omelchenko, I. A., Nelson, C. S., and Allen, C. N. (1997) Lead inhibition of NMDA receptors containing NR2A, NR2C and NR2D subunits. J. PET 282, 1458–1464.Google Scholar
  28. 28.
    Wilson, M. A., Johnston, M. V., Goldstein, G. W., and Blue, M. E. (2000) Neonatal lead exposure impairs development of rodent barrel field cortex. Proc. Natl. Acad. Sci. USA 97, 5540–5545.PubMedGoogle Scholar
  29. 29.
    Windebank, A. J. (1986) Specific inhibition of myelination by lead in vitro; comparison with arsenic, thallium, and mercury. Exp. Neurol. 94, 203–212.PubMedGoogle Scholar
  30. 30.
    Tang, H.-W., Yan, H.-L., Hu, X.-H., Liang, Y.-X., and Shen, X.-Y. (1996) Lead cytotoxicity in primary cultured rat astrocytes and Schwann cells. J. Appl. Toxicol. 16, 187–196.PubMedGoogle Scholar
  31. 31.
    Deng, W., McKinnon, R. D., and Poretz, R. D. (2001) Lead exposure delays the differentiation of oligodendroglial progenitors in vitro. Toxicol. Appl. Pharmacol. 174, 235–244.PubMedGoogle Scholar
  32. 32.
    Tiffany-Castiglioni, E., Zmudzki, J., Wu, J.-N., and Bratton, G. R. (1987) Effects of lead treatment on intracellular Cu and Fe in cultured astroglia. Metab. Brain Dis. 2, 61–79.PubMedGoogle Scholar
  33. 33.
    Engle, M. J. and Volpe, J. J. (1990) Glutamine synthetase activity of developing astrocytes is inhibited in vitro by very low concentrations of lead. Dev. Brain Res. 55, 283–287.Google Scholar
  34. 34.
    Sierra, E. M. and Tiffany-Castiglioni, E. (1991) Reduction of glutamine synthetase activity in astroglia exposed in culture to low levels of inorganic lead. Toxicology 65, 295–304.PubMedGoogle Scholar
  35. 35.
    Dave, V., Vitarella, D., Aschner, J. L., Fletcher, P., Kimelberg, H. K., and Aschner, M. (1993) Lead increases inositol 1,4,5-trisphosphate levels but does not interfere with calcium transients in primary rat astrocytes. Brain Res. 618, 9–18.PubMedGoogle Scholar
  36. 36.
    Kerper, L. E. and Hinkle, P. M. (1997) Cellular uptake of lead is activated by depletion of intracellular calcium stores. J. Biol. Chem. 272, 8346–8352.PubMedGoogle Scholar
  37. 37.
    Legare, M. E., Barhoumi, R., Hebert, E., Bratton, G. R., Burghardt, R. C., and Tiffany-Castiglioni, E. (1998) Analysis of Pb2+ entry into cultured astroglia. Toxicol. Sci. 46, 90–100.PubMedGoogle Scholar
  38. 38.
    Rowles, T. K., Womac, C., Bratton, G. R., and Tiffany-Castiglioni, E. (1989) Interaction of lead and zinc in cultured astroglia. Metab. Brain Dis. 4, 187–201.PubMedGoogle Scholar
  39. 39.
    Qian, Y., Tiffany-Castiglioni, E., and Harris, E. D. (1995) Copper transport and kinetics in cultured C6 rat glioma cells. Am. J. Physiol. 269, C892–C898.PubMedGoogle Scholar
  40. 40.
    Qian, Y., Mikeska, G., Harris, E. D., Bratton, G. R., and Tiffany-Castiglioni, E. (1999) Effect of lead exposure and accumulation on copper homeostasis in cultured C6 rat glioma cells. Toxicol. Appl. Pharmacol. 158, 41–49.PubMedGoogle Scholar
  41. 41.
    Legare, M. E., Barhoumi, R., Burghardt, R. C., and Tiffany-Castiglioni, E. (1993) Low-level lead exposure in cultured astroglia: identification of cellular targets with vital fluorescent probes. Neurotoxicology 14, 267–272.PubMedGoogle Scholar
  42. 42.
    Qian, Y., Harris, E. D., Zheng, Y., and Tiffany-Castiglioni, E. (2000) Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol. Appl. Pharmacol. 163, 260–266.PubMedGoogle Scholar
  43. 43.
    Qian, Y., Falahatpsheh, M. H., Zheng, Y., Ramos, K. S., and Tiffany-Castiglioni, E. (2001) Induction of 78 kD glucose-regulated protein (GRP 78) expression and redox-regulated transcription factor activity by lead and mercury in C6 rat glioma cells. Neurotox. Res. 3, 581–589.PubMedGoogle Scholar
  44. 44.
    Qian, Y. and Tiffany-Castiglioni, E. (2003) Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem. Res. 28, 153–162.PubMedGoogle Scholar
  45. 45.
    Holtzman, D., de Vries, C., Nguyen, H., Olson, J., and Bensch, K. (1984) Maturation of resistance to lead encephalopathy: cellular and subcellular mechanisms. Neurotoxicology 5, 97–124.PubMedGoogle Scholar
  46. 46.
    Holtzman, D., Olson, J., de Vries, C., and Bensch, K. (1987) Lead toxicity in primary cultured cerebral astrocytes and cerebellar granule neurons. Toxicol. Appl. Pharmacol. 89, 211–235.PubMedGoogle Scholar
  47. 47.
    Tiffany-Castiglioni, E. (1993) Cell culture models for lead toxicity in neuronal and glial. Neurotoxicology 4, 513–536.Google Scholar
  48. 48.
    Tiffany-Castiglioni, E., Legare, M.E., Schneider, L. A., Hanneman, W. H., Zenger, E., and Hong, S. J. (1996) Astroglia and neurotoxicity, in The Role of Glia in Neurotoxicity (Aschner, M. and Kimelberg, H. K., eds.) CRC, Boca Raton, FL, pp. 175–200.Google Scholar
  49. 49.
    Yip, R. and Dallman, P. R. (1984) Developmental changes in erythrocyte protoporphyrin: the roles of iron deficiency and lead toxicity. J. Pediatr. 104, 710–730.PubMedGoogle Scholar
  50. 50.
    Yip, R. (1990) Multiple interactions between childhood iron deficiency and lead poisoning: evidence that childhood lead poisoning is an adverse consequence of iron deficiency, in Recent Knowledge on Iron and Folate Deficiencies in the World (Hercberg, S., Galan, P., and Dupin, H., eds.), Colloque INSERM, Paris, pp. 523–532.Google Scholar
  51. 51.
    O’Flaherty, E. J. (1995) Physiologically based models for bone-seeking elements. V. Lead absorption and disposition in childhood. Toxicol. Appl. Pharmacol. 131, 297–308.Google Scholar
  52. 52.
    Scortegagna, M., Chikhale, E., and Hanbauer, I. (1998) Lead exposure increases oxidative stress in serum deprived E14 mesencephalic cultures. Role of metallothionein and glutathione. Restor. Neurol. Neurosci. 12, 95–101.PubMedGoogle Scholar
  53. 53.
    Liu, M. Y., Hsieh, W. C., and Yang, B. C. (2000) In vitro aberrant gene expression as the indicator of lead-induced neurotoxicity in U-373MG cells. Toxicology 147, 59–64.PubMedGoogle Scholar
  54. 54.
    Long, G. J., Rosen, J. F., and Schanne, F. A. X. (1994) Lead activation of protein kinase C from rat brain. J. Biol. Chem. 269, 834–837.PubMedGoogle Scholar
  55. 55.
    Srivastava, D., Hurwitz, R. L., and Fox, D. A. (1995) Lead-and calcium-mediated inhibition of bovine rod cGMP phosphodiesterase: interactions with magnesium. Toxicol. Appl. Pharmacol. 134, 43–52.PubMedGoogle Scholar
  56. 56.
    Tomsig, J. L. and Suszkiw, J. B. (1995) Multisite interactions between Pb+2 and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. J. Neurochem. 64, 2667–2773.PubMedGoogle Scholar
  57. 57.
    Westerink, R. H. S. and Vijverberg, H. P. M. (2002) Ca+2-independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb+2. J. Neurochem. 80, 861–873.PubMedGoogle Scholar
  58. 58.
    Tomsig, J. L. and Suszkiw, J. B. (1990) Pb-induced secretion from bovine chromaffin cells: fura-2 as a probe for Pb2+. Am. J. Physiol. 259, C762–C768.PubMedGoogle Scholar
  59. 59.
    Legare, M. E., Castiglioni, A. J., Jr., Rowles, T. K., Calvin, J. A., Snyder-Armstead, C., and Tiffany-Castiglioni, E. (1993) Morphological alterations of neurons and astrocytes in guinea pigs exposed to low levels of inorganic lead. NeuroToxicology 14(1), 77–80.PubMedGoogle Scholar
  60. 60.
    Breen, K. and Regan, C. M. (1988) Developmental control of N-CAM sialylation state by Golgi sialyltransferase isoforms. Development 104, 147–154.PubMedGoogle Scholar
  61. 61.
    Breen, K. and Regan, C. M. (1988) Lead stimulates Golgi sialyltransferase at times coincident with the embryonic to adult conversion of the neural cell adhesion molecule. Toxicology 49, 71–76.PubMedGoogle Scholar
  62. 62.
    Regan, C. M. (1993) Neural cell adhesion molecules, neuronal development, and lead toxicity. Neurotoxicology 14, 69–74.PubMedGoogle Scholar
  63. 63.
    Audesirk, T., Audesirk, G., Ferguson, C., and Shugarts, D. (1991) Effects of inorganic lead on the differentiation and growth of cultured hippocampal and neuroblastoma cells. Neurotoxicology 12, 529–538.PubMedGoogle Scholar
  64. 64.
    Kern, M., Audesirk, T., and Audesirk, G. (1993) Effects of inorganic lead on the differentiation and growth of cortical neurons in culture. Neurotoxicology 14, 319–328.PubMedGoogle Scholar
  65. 65.
    Williams, T. M., Ndifor, A. M., Neary, J. T., and Reams-Brown, R. R. (2000) Lead enhances NGF-induced neurite outgrowth in PC12 cells by potentiating ERK/MAPK activation. Neurotoxicology 21, 1081–1090.PubMedGoogle Scholar
  66. 66.
    Crumpton, T., Atkins, D., Zawia, N., and Barone, S. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNAbinding. Neurotoxicology 22, 49–62.PubMedGoogle Scholar
  67. 67.
    Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000) Cadherins in embryonic and neural morphogenesis. Nature Rev. 1, 91–100.Google Scholar
  68. 68.
    Dey, P. M., Burger, J., Gochfeld, M., and Reuhl, K. R. (2000) Developmental lead exposure disturbs expression of synaptic neural cell adhesion molecules in herring gull brains. Toxicology 146, 137–147.PubMedGoogle Scholar
  69. 69.
    Prozialeck, W. C., Grunwald G. B., Dey, P. M., Reuhl, K. R., and Parrish, A. R. (2002) Cadherins and NCAM as potential targets in metal toxicity. Toxicol. Appl. Pharmacol. 182, 255–265.PubMedGoogle Scholar
  70. 70.
    Zawia, N. H. and Harry, G. J. (1996) Developmental exposure to lead interferes with glial and neuronal differential gene expression in the rat cerebellum. Toxicol. Appl. Pharmacol. 138, 43–47.PubMedGoogle Scholar
  71. 71.
    Zawia, N. H., Evers, L. B., and Harry, G. J. (1994) Developmental profiles of ornithine decarboxylase activity in the hippocampus, neocortex and cerebellum: modulation following lead exposure. Int. J. Dev. Neurosci. 12, 25–30.PubMedGoogle Scholar
  72. 72.
    Zawia, N. H., Evers, L. B., Kodavanti, P. R., and Harry, G. J. (1994) Modulation of developmental cerebellar ornithine decarboxylase activity by lead-acetate. Neurotoxicology 15, 903–911.PubMedGoogle Scholar
  73. 73.
    Murray, B. A., Hemperly, J. J., Prediger, E. A., Edelman, G. M., and Cunningham, B. A. (1986) Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM). J. Cell Biol. 102, 189–193.PubMedGoogle Scholar
  74. 74.
    Jorgensen, O. S. (1995) Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodeling. Neurochem. Res. 20, 533–547.PubMedGoogle Scholar
  75. 75.
    Noble, M., Albrechtsen, M., Moller, C., et al. (1985) Glial cells express NCAM/ D2-CAM-like polypeptides in vitro. Nature 316, 725–748.PubMedGoogle Scholar
  76. 76.
    Moran, N. M. and Bock, E. (1988) Characterization of the kinetics of neural cell adhesion molecule homophilic binding. FEBS Lett. 242, 121–124.PubMedGoogle Scholar
  77. 77.
    Edelman, G. M. and Chuong, C.-M. (1982) Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc. Natl. Acad. Sci. USA 79, 7036–7040.PubMedGoogle Scholar
  78. 78.
    Ronn, L. C. B., Hartz, B. P., and Bock, E. (1998) The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp. Gerontol. 33, 853–864.PubMedGoogle Scholar
  79. 79.
    Davey, F. D. and Breen, K. C. (1998) Stimulation of sialyltransferase by subchronic low-level lead exposure in the developing nervous system. A potential mechanism of teratogen action. Toxicol. Appl. Pharmacol. 151, 16–21.PubMedGoogle Scholar
  80. 80.
    Riehl, R., Johnson, K., Bradley, R., et al. (1996) Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837–848.PubMedGoogle Scholar
  81. 81.
    Inoue, A. and Sanes, J. R. (1997) Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431.PubMedGoogle Scholar
  82. 82.
    Tanaka, H., Shan, W., Phillips, G. R., et al. (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107.PubMedGoogle Scholar
  83. 83.
    Fannon, A. M. and Colman, D. R. (1996) A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423–434.PubMedGoogle Scholar
  84. 84.
    Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J., and Takeichi, M. (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779.PubMedGoogle Scholar
  85. 85.
    Zhou, M., Tian, X., and Suszkiw, J. B. (2000) Developmental stage-dependent protective effect of NGF against lead cholinotoxicity in the rat septum. Brain Res. 866, 268–273.PubMedGoogle Scholar
  86. 86.
    Reinhard, E., Nedivi, E., Wegner, J., Skene, J. H. P., and Westerfield, M. (1994) Neural selective activation and temporal regulation of a mammalian GAP-43 promotor in zebrafish. Development 120, 1767–1775.PubMedGoogle Scholar
  87. 87.
    Bernstein, H.-G. and Muller, M. (1999) The cellular localization of the l-ornithine decarboxylase/polyamine sytemin normal and diseased central nervous system. Prog. Neurobiol. 57, 485–505.PubMedGoogle Scholar
  88. 88.
    Klekner, A., Rohn, A. G., Schillinger, G., Schroder, R., Klug, N., and Ernestus, R. I. (2001) ODC mRNA as a prognostic factor for predicting recurrence in meningiomas. J. Neurooncol. 53, 67–75.PubMedGoogle Scholar
  89. 89.
    Hilliard, A., Ramesh, A., and Zawia, N. H. (1999) Correlation between leadinduced changes in cerebral ornithine decarboxylase and protein kinase C activities during development and in cultured PC12 cells. Int. J. Dev. Neurosci. 17, 777–785.PubMedGoogle Scholar
  90. 90.
    Toews, A. D., Krigman, M. R., Thomas, D. J., and Morell, P. (1980) Effect of inorganic lead exposure on myelination in the rat. Neurochem. Res. 5, 605–616.PubMedGoogle Scholar
  91. 91.
    Toews, A. D., Blaker, W. D., Thomas, D. J., et al. (1983) Myelin deficit produced by early postnatal exposure to inorganic lead or triethyltin are persistent. J. Neurochem. 41, 816–822.PubMedGoogle Scholar
  92. 92.
    Harry, G. J., Toews, A. D., Kirgman, M. R., and Morell, P. (1985) The effect of lead toxicity and milk deprivation on myelination in the rat. Toxicol. Appl. Pharmacol. 77, 458–464.PubMedGoogle Scholar
  93. 93.
    Sundstr^m, R. and Karlsson, B. (1987) Myelin basic protein in brains of rats with low dose lead encephalopathy. Arch. Toxicol. 59, 341–345.Google Scholar
  94. 94.
    Seppalainen, A. M., Hernberg, S., Vesanto, R., and Kock, B. (1983) Early neurotoxic effects of occupational lead exposure: a prospective study. Neurotoxicology 4(2), 181–192.PubMedGoogle Scholar
  95. 95.
    Araki, S., Sato, H., Yokoyama, K., and Murata, K. (2000) Subclinical neurophysiological effects of lead: a review on peripheral, central, and autonomic nervous system effects in lead workers. Am. J. Ind. Med. 37, 193–204.PubMedGoogle Scholar
  96. 96.
    Harry, G. J., Billingsley, M., Bruinink, A., et al. (1998) In vitro techniques for the assessment of neurotoxicity. Environ. Health Perspect. 106(Suppl.), 131–158.PubMedGoogle Scholar
  97. 97.
    Dabrowska-Bouta, B., Sulkowski, G., Bartosz, G., Walski, M., and Rafalowska, U. (1999) Chronic lead intoxication affects the myelin membrane status in the central nervous system of adult rats. J. Mol. Neurosci. 13, 127–139.PubMedGoogle Scholar
  98. 98.
    Wu, J.-N. and Tiffany-Castiglioni, E. (1987) Reduction by lead of hydrocortisone-induced glycerol phosphate dehydrogenase activity in cultured rat oligodendroglia. In Vitro Dev. Cell. Biol. 23, 765–774.Google Scholar
  99. 99.
    Sierra, E. M., Rowles, T. K., Martin, J., Bratton, G. R., Womac, C., and Tiffany-Castiglioni, E. (1989) Low level lead neurotoxicity in a pregnant guinea pig model: Neuroglial enzyme activities and brain trace metal concentrations. Toxicology 59, 81–96.PubMedGoogle Scholar
  100. 100.
    Gordon, M. N., Kumar, S., Espinosa de los Monteros, A., and de Vellis, J. (1992) Ontogeny of glycerol phosphate dehydrogenase-positive oligodendrocytes in rat brain. Impaired differentiation of oligodendrocytes in the myelin deficient mutant rat. Int. J. Devel. Neurosci. 10, 243–253.Google Scholar
  101. 101.
    Deng, W. and Poretz, R. D. (2002) Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells. Brain Res. 929, 87–95.PubMedGoogle Scholar
  102. 102.
    Yim, S. H., Farrer, R. G., and Quarles, R. H. (1995) Expression of glycolipids and myelin-associated glycoprotein during the differentiation of oligodendrocytes: comparison of the CG-4 glial cell line to primary cultures. Dev. Neurosci. 17, 171–180.PubMedGoogle Scholar
  103. 103.
    Deng, W. and Poretz, R. D. (2001) Lead exposure affects levels of galactolipid metabolic enzymes in the developing rat brain. Toxicol. Appl. Pharmacol. 172, 98–107.PubMedGoogle Scholar
  104. 104.
    Deng, W. and Poretz, R. D. (2001) Lead alters the developmental profile of the galactolipid metabolic enzymes in cultured oligodendrocyte lineage cells. Neurotoxicology 22, 429–437.PubMedGoogle Scholar
  105. 105.
    Poretz, R. D., Yang, A., Deng, W., and Manowitz, P. (2000) The interaction of lead exposure and arylsulfatase A genotype affects sulfatide catabolism in human fibroblasts. Neurotoxicology 21, 379–387.PubMedGoogle Scholar
  106. 106.
    Chen, X. G. and Poretz, R. D. (2001) Lead causes human fibroblasts to missort arylsulfatase A. Toxicology 163, 107–114.PubMedGoogle Scholar
  107. 107.
    S·nchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D., and Nixon, R. A. (1996) Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci. 16, 5095–5105.Google Scholar
  108. 108.
    Sortwell, C. E., Daley, B. F., Pitzer, M. R., McGuire, S. O., Sladek, J. R., and Collier, T. J. (2000) Oligodendrocyte-type 2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition of apoptotic cell death. J. Comp. Neurol. 426, 143–153.PubMedGoogle Scholar
  109. 109.
    Kaplan, M. R., Meyer-Franke, A., Lambert, S., et al. (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728.PubMedGoogle Scholar
  110. 110.
    Taniike, M., Mohri, I., Eguchi, N., Beuckmann, C. T., Suzuki, K., and Urade, Y. (2002) Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J. Neurosci. 22, 4885–4896.PubMedGoogle Scholar
  111. 111.
    Zawia, N. H. and Harry, G. J. (1995) Exposure to lead-acetate modulates the developmental expression of myelin genes in the rat frontal lobe. Int. J. Dev. Neurosci. 13, 639–644.PubMedGoogle Scholar
  112. 112.
    Popko, B., Pearl, D. K., Walker, D. M., et al. (2002) Molecular markers that identify human astrocytomas and oligodendrogliomas. J. Neuropathol. Exp. Neurol. 61, 329–338.PubMedGoogle Scholar
  113. 113.
    Anttila A. Heikkila P. Nykyri E. et al. (1996) Risk of nervous system cancer among workers exposed to lead. J. Occup. Environ. Med. 38, 131–136.PubMedGoogle Scholar
  114. 114.
    Cohen, R. D., Bowser, D. H., and Costa, M. (1996) Carcinogenicity and genotoxicity of lead, beryllium, and other metals, in Toxicology of Metals (Chang, L. W., Magos, L., and Suzuki, T., eds.), CRC/Lewis, Boca Raton, FL, pp. 253–284.Google Scholar
  115. 115.
    Johnson, F. M. (1998) The genetic effects of environmental lead. Mutat. Res. 410, 123–140.PubMedGoogle Scholar
  116. 116.
    Gencic, S. and Hudson, L. D. (1990) conservative amino acid substitution in the myelin proteolipid protein of jimpymsd mice. J. Neurosci. 10, 117–124.PubMedGoogle Scholar
  117. 117.
    Henson, J., Saffer, J., and Furneaux, H. (1992) The transcription factor Sp1 binds to the JC virus promoter and is selectively expressed in glial cells in human brain. Ann. Neurol. 32, 72–77.PubMedGoogle Scholar
  118. 118.
    Kumar, A. P., Mar, P. K., Zhao, B., Montgomery, R. L., Kang, D. C., and Butler, A. P. (1995) Regulation of rat ornithine decarboxylase promoter activity by binding of transcription factor Sp1. J. Biol. Chem. 270, 4341–4348.PubMedGoogle Scholar
  119. 119.
    Bai, G. and Kusiak, J. W. (1995) Functional analysis of the proximal 5′-flanking region of the N-methyl-d-aspartate receptor subunit gene, NMDAR1. J. Biol. Chem. 270, 7737–7744.PubMedGoogle Scholar
  120. 120.
    Saffer, J. D., Jackson, S. P., and Annarella, M. B. (1991) Developmental expression of Sp1 in the mouse. Mol. Cell Biol. 11, 2189–2199.PubMedGoogle Scholar
  121. 121.
    Zawia, N. H., Sharan, R., Brydie, M., Oyama, T., and Crumpton, T. (1998) Sp1 as a target site for metal-induced perturbations of transcriptional regulation of developmental brain gene expression. Dev. Brain Res. 107, 291–298.Google Scholar
  122. 122.
    Razmiafshari, M. and Zawia, N. H. (2000) Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain. Toxicol. Appl. Pharmacol. 166, 1–12.PubMedGoogle Scholar
  123. 123.
    Razmiafshari, M., Kao, J., ďAvignon, A., and Zawia, N. H. (2001) NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol. Appl. Pharmacol. 172, 1–10.PubMedGoogle Scholar
  124. 124.
    Miskimins, R. and Miskimins, W. K. (2001) A role for an AP-1-like site in the expression of the myelin basic protein gene during differentiation. Int. J. Dev. Neurosci. 19, 85–91.PubMedGoogle Scholar
  125. 125.
    Tiffany-Castiglioni, E., Sierra, E. M., Wu, J.-N., and Rowles, T. K. (1989) Lead toxicity in neuroglia. Neurotoxicology 10, 383–410.Google Scholar
  126. 126.
    Tiffany-Castiglioni, E., Legare, M. E., Schneider, L. A., et al. (1996) Heavy metal effects on glia, in Methods in Neurosciences, Volume 30 (Regino Perez-Polo, J., ed.) Academic, New York, pp. 135–165.Google Scholar
  127. 127.
    Tiffany-Castiglioni, E. and Qian, Y. (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22, 577–592.Google Scholar
  128. 128.
    Lidsky, T. I. and Schneider, J. S. (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126, 5–19.PubMedGoogle Scholar
  129. 129.
    Opanashuk, L. A. and Finkelstein, J. N. (1995) Induction of newly synthesized proteins in astroglial cells exposed to lead. Toxicol. Appl. Pharmacol. 131, 21–30.PubMedGoogle Scholar
  130. 130.
    Opanashuk, L. A. and Finkelstein, J. N. (1995) Relationship of lead-induced proteins to stress response proteins in astroglial cells. J. Neurosci. Res. 42, 623–632.PubMedGoogle Scholar
  131. 131.
    Selvin-Testa, A., Capani, F., Loidl, C. F., Lopez, E. M., and Pecci-Saavedra, J. (1997) Prenatal and postnatal lead exposure induces 70 kDa heat shock protein in young rat brain prior to changes in astrocyte cytoskeleton. Neurotoxicology 18, 805–817.PubMedGoogle Scholar
  132. 132.
    Li, P. and Rossman, T. G. (2001) Genes upregulated in lead-resistant glioma cells reveal possible targets for lead-induced developmental neurotoxicity. Toxicol. Sci. 64, 90–99.PubMedGoogle Scholar
  133. 133.
    Bradbury, M. W. B. and Deane, R. (1993) Permeability of the blood-brain barrier to lead. Neurotoxicology 14, 131–136.PubMedGoogle Scholar
  134. 134.
    Lindahl, L., Bird, L., Legare, M. E., Mikeska, G., Bratton, G. R, and Tiffany-Castiglioni, E. (1999) Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and on degree of differentiation. Toxicol. Sci. 50, 236–243.PubMedGoogle Scholar
  135. 135.
    Thomas, J. A., Dallenbeck, F. D., and Thomas, M. (1973) The distribution of radioactive lead [210Pb] in the cerebellum of developing rats. J. Pathol. 109, 45–50.PubMedGoogle Scholar
  136. 136.
    Shirabe, T. and Hirano, A. (1977) X-ray microanalytical studies of lead-implanted rat brains. Acta Neuropathol. 40, 189–192.PubMedGoogle Scholar
  137. 137.
    Zurich, M. G., Monnet-Tschudi, F., Bérode, M., and Honegger, P. (1998) Lead acetate toxicity in vitro: dependence on the cell composition of the cultures. Toxicol. In Vitro 12, 191–196.PubMedGoogle Scholar
  138. 138.
    Vaguera-Orte, J., Cervos-Navarro, J., Martin-Giron, F., and Becerra-Ratia, J. (1981) Fine structure of the perivascular-limiting membrane, in Cerebral Microcirculation and Metabolism (Cervos-Navarro, J. and Fitschka, E., eds.), Raven, New York, pp. 129–138.Google Scholar
  139. 139.
    Young, J. K., Garvey, J. S., and Huang, P. C. (2000) Glial immunoreactivity for metallothionein in the rat brain. Glia 4, 602–620.Google Scholar
  140. 140.
    Penkowa, M., Nielsen, H., Hidalgo, J., Bernth, N., and Moos, T. (1999) Distribution of metallothionein I+II and vesicular zinc in the developing central nervous system: Correlative study in the rat. J. Comp. Neurol. 412, 303–318.PubMedGoogle Scholar
  141. 141.
    Masters, B. A., Quaife, C. J., Erickson, J. C., et al. (1994) Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci. 14, 5844–5857.PubMedGoogle Scholar
  142. 142.
    Erickson, J. C., Hollopeter, G., Thomas, S. A., Froelick, G. J., and Palmiter, R. D. (1997) Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J. Neurosci. 17, 1271–1281.PubMedGoogle Scholar
  143. 143.
    Carrasco, J., Giralt, M., Molinero, A., Penkowa, M., Moos, T., and Hidalgo, J. (1999) Metallothionein (MT)-III: generation of polyclonal antibodies, comparison with MT-I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer’s disease brains. J. Neurotrauma 16, 1115–1129.PubMedGoogle Scholar
  144. 144.
    Aschner, M., Conklin, D. R. Yao, C. P., Allen, J. W., and Tan, K. H. (1998) Induction of astrocyte metallothioneins (Mts) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release. Brain Res. 813, 254–261.PubMedGoogle Scholar
  145. 145.
    Kramer, K. K., Zoelle, J. T., and Klaassen, C. D. (1996) Induction of metallothionein mRNA and protein in primary murine neuron cultures. Toxicol. Appl. Pharmacol. 141, 1–7.PubMedGoogle Scholar
  146. 146.
    Raps, S. P., Lai, J. C., Hertz, L., and Cooper, A. J. (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 493, 398–401.PubMedGoogle Scholar
  147. 147.
    Slivka, A., Mytilineou, C., and Cohen, G. (1987) Histochemical evaluation of glutathione in brain. Brain Res. 409, 275–284.PubMedGoogle Scholar
  148. 148.
    Philbert, M. A., Beiswanger, C. M., Waters, D. K., Reuhl, K. R., and Lowndes, H. E. (1991) Cellular and regional distribution of reduced glutathione in the nervous system of the rat: histochemical localization by mercury orange and o-phthaldialdhyde-induced histofluorescence. Toxicol. Appl. Pharmacol. 107, 215–227.PubMedGoogle Scholar
  149. 149.
    Klomp, L., Farhangrazi, Z., Dugan, L., and Gitlin, J. (1996) Ceruloplasmin gene expression in the murine central nervous system. J. Clin. Invest. 98, 207–215.PubMedGoogle Scholar
  150. 150.
    Patel, B. N. and David, S. (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem. 272, 20,185–20,190.PubMedGoogle Scholar
  151. 151.
    Kaler, S. G. and Schwartz, J. P. (1998) Expression of the menkes disease homolog in rodent neuroglial cells. Neurosci. Res. Commun. 23, 61–66.Google Scholar
  152. 152.
    Qian, Y., Tiffany-Castiglioni, E., and Harris, E. D. (1997) A Menkes P-type ATPase involved in copper homeostasis in the central nervous system of the rat. Mol. Brain. Res. 48, 60–66.PubMedGoogle Scholar
  153. 153.
    Niklowitz, W. J. (1980) Toxicology of lead, in Advances in Neurotoxicology (Manso, L., Lory, N., Lacasse, Y., and Roche, L., eds.), Permagon, New York, pp. 27–43.Google Scholar
  154. 154.
    Rehman, S.-U. and Chandra, O. (1984) Regional interrelationships of zinc, copper, and lead in the brain following lead intoxication. Bull. Environ. Contam. Toxicol. 32, 157–165Google Scholar
  155. 155.
    Tiffany-Castiglioni, E., Garcia, D. M., Wu, J. N., Zmudzki, J., and Bratton, G. R. (1988) Effects of lead on viability and intracellular metal content of C6 rat glioma cells. J. Toxicol. Environ. Health 23, 267–279.PubMedGoogle Scholar
  156. 156.
    Wedler, F. C. and Denman, R. B. (1984) Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr. Topics Cell. Regul. 24, 153–169.Google Scholar
  157. 157.
    Norenberg, M. D. and Martinez-Hernandez, A. (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303–310.PubMedGoogle Scholar
  158. 158.
    Kodama, H., Meguro, Y., Abe, T., et al. (1991) Genetic expression of Menkes disease in cultured astrocytes of the macular mouse. J. Inherit. Metab. Dis. 14, 896–901.PubMedGoogle Scholar
  159. 159.
    Kodama, H. (1993) Recent developments in Menkes disease. J. Inherit. Metab. Dis. 16, 791–799.PubMedGoogle Scholar
  160. 160.
    Hartmann, H. A. and Evenson, M. A. (1992) Deficiency of copper can cause neuronal degeneration. Med. Hypotheses 38, 75–85.PubMedGoogle Scholar
  161. 161.
    Scortegagna, M. and Hanbauer, I. (2000) Increase AP-1 binding activity and nuclear REF-1 accumulation in lead-exposed primary cultures of astroglia. Neurochem. Res. 25, 861–866.PubMedGoogle Scholar
  162. 162.
    Buchner, J. (1999). Hsp90 & Co.—a holding for folding. Trends Biochem. Sci. 24, 36–141.Google Scholar
  163. 163.
    Caplan, A. J. (1999). Hsp90’s secrets unfold: new insights from structural and functional studies. Cell Biol. 9, 262–268.Google Scholar
  164. 164.
    Lee, A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267–273.PubMedGoogle Scholar
  165. 165.
    Gething, M. J. (1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford University Press, Oxford.Google Scholar
  166. 166.
    Chapman, R., Sidrauski, C., and Walter, P. (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell. Dev. Biol. 14, 459–485.PubMedGoogle Scholar
  167. 167.
    Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.PubMedGoogle Scholar
  168. 168.
    Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464.PubMedGoogle Scholar
  169. 169.
    Wooden, S. K., Li, L. J., Navarro, D., Qadri, I., Pereira, L., and Lee, A. S. (1991) Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol. Cell. Biol. 11, 5612–5623.PubMedGoogle Scholar
  170. 170.
    Miyata, T., Kokame, K., Agarwala, K.L., and Kato, H. (1998) Analysis of gene expression in homocysteine-injured vascular endothelial cells: demonstration of GRP78/BiP expression, cloning and characterization of a novel reducing agent-tunicamycin regulated gene. Semin. Thromb. Hemost. 24, 285–291.PubMedGoogle Scholar
  171. 171.
    Cao, X., Zhou, Y., and Lee, A. S. (1995) Requirement of tyrosine-and serine/threonine kinases in the transcriptional activation of the mammalian grp78/BiP promoter by thapsigargin. J. Biol. Chem. 270, 494–502.PubMedGoogle Scholar
  172. 172.
    Tully, D. B., Collins, B. J., Overstreet, J. D., et al. (2000) Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol. Appl. Pharmacol. 168, 79–90.PubMedGoogle Scholar
  173. 173.
    Fernandez, P. M., Tabbara, S. O., Jacobs, L. K., et al. (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res. Treat. 59, 15–26.PubMedGoogle Scholar
  174. 174.
    Liu, H., Miller, E., van de Water, B., and Stevens, J. L. (1998) Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J. Biol. Chem. 273, 12,858–12,862.PubMedGoogle Scholar
  175. 175.
    Norenberg, M. (1996) Reactive astrocytosis, in The Role of Glia in Neurotoxicity (Aschner, M. and Kimelberg, H. K., eds.), CRC, Boca Raton, FL, pp. 93–107.Google Scholar
  176. 176.
    Stoltenburg-Didinger, I., Pünder, B., Peters, M., et al. (1996) Glial fibrillary acidic protein and RNA expression in adult rat hippocampus following lowlevel lead exposure during development. Histochem. Cell Biol. 105, 431–442.PubMedGoogle Scholar
  177. 177.
    Harry, G. J., Schmitt, T. J., Gong, Z., Brown, H., Zawia, N., and Evans, H. L. (1996) Lead-induced alterations of glial fibrillary acidic protein (GFAP) in the developing rat brain. Toxicol. Appl. Pharmacol. 139, 84–93.PubMedGoogle Scholar
  178. 178.
    Selvin-Testa, A., Loidl, C. F., Lopez, E. M., Capani, F., Lopez-Costa, J. J., and Pecci-Saavedra, J. (1995) Prolonged lead exposure modifies astrocyte cytoskeletal proteins in the rat brain. Neurotoxicology 16, 389–401.PubMedGoogle Scholar
  179. 179.
    Struzyñska, L. Bubko, I., Walski, M., and Rafalwska, U. (2001) Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology 165, 121–131.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Evelyn Tiffany-Castiglioni
    • 1
  • Yongchang Qian
    • 1
  1. 1.Department of Veterinary Anatomy and Public Health, College of Veterinary MedicineTexas A&M UniversityCollege Station

Personalised recommendations