Impairment of Neurotransmitter Metabolism and Function by Neurotoxicants

Enzyme Pathways in Neurons and Astroglia
  • Michael Aschner
  • Ursula Sonnewald
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


In order to perform neurotoxicological studies, model systems have to be established and techniques developed to analyze relevant parameters. The present chapter describes the in vitro effects of the neurotoxicants aminooxyacetic acid (AOAA), 3-nitropropionic acid (3-NPA), and methylmercury (MeHg) on glial cell neurotransmitters, and for 3-NPA, we also describe the effects on cultured neurons. Major emphasis is directed at the effects of these compounds on glutamate metabolism.


Cerebellar Granule Cell Pyruvate Carboxylase Cerebellar Granule Neuron Excitatory Amino Acid Transporter Glutamate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schousboe, A., Meier, E., Drejer, J., and Hertz, L. (1989) Preparation of primary cultures of mouse (rat) cerebellar granule cells, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., De Vellis, J., Vernadakis, A., and Haber B., eds.), Alan R. Liss, New York, pp. 183–186.Google Scholar
  2. 2.
    Hertz, E., Yu, A. C. H., Hertz, L., Juurlink, B. H. J., and Schousboe, A. (1989) Preparation of primary cultures of mouse (rat) neurons, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., De Vellis, J., Vernadakis, A., and Haber, B, eds.), Alan R Liss, New York, pp. 183–186.Google Scholar
  3. 3.
    Hertz, L., Juurlink, B. H. J., Hertz, E., Fosmark, H., and Schousboe, A. (1989) Preparation of primary cultures of mouse (rat) astrocytes, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar, A., De Vellis, J., Vernadakis, A., and Haber, B., eds.), Alan R. Liss, New York, pp. 105–108.Google Scholar
  4. 4.
    Aschner, M. and Kimelberg, H. K. (eds.) (1996) The Role of Glia in Neurotoxicology, CRC, Boca Raton, FL.Google Scholar
  5. 5.
    Kettenmann, H. and Ransom, B. R. (eds.) (1995) Neuroglia, Oxford University Press, New York.Google Scholar
  6. 6.
    Schousboe, A., Westergaard, N., Sonnewald, U., Peterson, S. B., Yu, A. C. H., and Hertz, L. (1992) Regulatory role of astrocytes for neuronal biosynthesis and homeostasis of glutamate and GABA. Prog. Brain Res. 94, 199–211.PubMedCrossRefGoogle Scholar
  7. 7.
    Rakic, R. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudge, J. S. (1993) Astrocyte-derived neurotrophic factors, in Astrocytes: Pharmacology and Function (Murphy, S., ed.), Academic, San Diego, CA, pp. 267–308.Google Scholar
  9. 9.
    Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D. (1977) Glutamine synthetase: glial localization in brain. Science 195, 1356–1358.PubMedCrossRefGoogle Scholar
  10. 10.
    Schousboe, A., Westergaard, N., Sonnewald, U., Peterson, S. B., Huang, R., and Peng, L. (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev. Neurosci. 15, 359–366.PubMedCrossRefGoogle Scholar
  11. 11.
    Sonnewald, U., Westergaard, N., and Schousboe, A. (1997) Glutamate transport and metabolism in astrocytes. Glia 21, 56–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Dringen, R., Pfeiffer, B., and Hamprecht, B. (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562–569.PubMedGoogle Scholar
  13. 13.
    Sagara, J., Miura, K., and Bannai, S. (1993) Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61, 1672–1676.PubMedCrossRefGoogle Scholar
  14. 14.
    Sagara, Y. and Schubert, D. (1998) The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J. Neurosci. 18, 6662–6671.PubMedGoogle Scholar
  15. 15.
    Wang, X. F. and Cynader, M. S. (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J. Neurochem. 74, 1434–1442.PubMedCrossRefGoogle Scholar
  16. 16.
    Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. (2001) Control of synapse number by glia. Science 291, 657–661.PubMedCrossRefGoogle Scholar
  17. 17.
    Bezzi, P., Domercq, M., Brambilla, L., et al. (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nature Neurosci. 4, 702–710.PubMedCrossRefGoogle Scholar
  18. 18.
    Hassel, B. and Sonnewald, U. (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids. J. Neurochem. 65, 2227–2234.PubMedCrossRefGoogle Scholar
  19. 19.
    Hassel, B., Sonnewald, U., and Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopy study. J. Neurochem. 64, 2773–2782.PubMedCrossRefGoogle Scholar
  20. 20.
    Håberg, A., Qu, H., Haraldseth, O., Unsgård, G., and Sonnewald, U. (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metab. 18, 1223–1232.PubMedCrossRefGoogle Scholar
  21. 21.
    Hassel, B. and Sonnewald, U. (1995) Selective inhibition of the TCA cycle of GABAergic neurons with 3-nitropropionic acid in vivo. J. Neurochem. 65, 1184–1191.PubMedCrossRefGoogle Scholar
  22. 22.
    Hassel, B., Bachelard, H., Fonnum, F., and Sonnewald, U. (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J. Cereb. Blood Flow Metab. 17, 1230–1238.PubMedCrossRefGoogle Scholar
  23. 23.
    Hassel, B., Sonnewald, U., Unsgård, G., and Fonnum, F. (1994) NMR spectroscopy of cultured astrocytes; synthesis of citrate and glutamine by different TCA cycles. Effects of glutamine and the gliotoxin fluorocitrate. J. Neurochem. 62, 2187–2194.PubMedCrossRefGoogle Scholar
  24. 24.
    Bakken, I. J., White, L. R., Unsgård, G., Aasly, J., and Sonnewald, U. (1998) [U-13C]glutamate metabolism in astrocytes during hypoglycemia and hypoxia. J. Neurosci. Res. 51, 636–645.PubMedCrossRefGoogle Scholar
  25. 25.
    Bakken, I. J., Johnsen, S. F., White, L. R., Unsgård, G., Åsly, J., and Sonnewald, U. (1997) NMR spectroscopy study of the effect of 3-nitropropionic acid on glutamate metabolism in cultured astrocytes. J. Neurosci. Res. 47, 642–649.PubMedCrossRefGoogle Scholar
  26. 26.
    Westergaard, W., Drejer, J., Schousboe, A., and Sonnewald, U. (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of (U-13C(glutamate. Glia 17, 160–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Sonnewald, U., Westergaard, N., Petersen, S. B., Unsgård, G., and Schousboe, A. (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the TCA cycle. J. Neurochem. 61, 1179–1182.PubMedCrossRefGoogle Scholar
  28. 28.
    McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., and Zielke, R. H. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66, 386–393.PubMedCrossRefGoogle Scholar
  29. 29.
    Sonnewald, U., Westergaard, N., Drejer, J., and Schousboe, A. (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate: implications for neurodegenerative diseases. Glia 17, 160–168.PubMedCrossRefGoogle Scholar
  30. 30.
    Sonnewald, U., White, L., ∅degård, E., et al. (1996) MRS study of glutamate metabolism in cultured neurons/glia. Neurochem. Res. 21, 987–993.PubMedCrossRefGoogle Scholar
  31. 31.
    Beal, M. F., Hyman, B. T., and Koroshetz, W. (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16, 125–131.PubMedCrossRefGoogle Scholar
  32. 32.
    Urbanska, E., Ikonomidou, C., Sieklucka, M., and Turski, W. A. (1991) Aminooxyacetic acid produces excitotoxic lesions in rat striatum. Synapse 9, 129–135.PubMedCrossRefGoogle Scholar
  33. 33.
    Beal, M. F., Swartz, K. J., Hyman, B. T., Storey, E., Finn, S. F., and Koroshetz, W. (1991) Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073.CrossRefGoogle Scholar
  34. 34.
    Gegelashvili, G. and Schousboe, A. (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45, 233–238.PubMedCrossRefGoogle Scholar
  35. 35.
    Hertz, L., Dringen, R., Schousboe, A., and Robinson, S. R. (1999) Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57, 417–428.PubMedCrossRefGoogle Scholar
  36. 36.
    Shank, R. P. and Aprison, M. H. (1977) Glutamine uptake and metabolism by the isolated toad brain: evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28, 1189–1196.PubMedCrossRefGoogle Scholar
  37. 37.
    Farinelli, S.E. and Nicklas, W. J. (1992) Glutamate metabolism in rat cortical astrocyte cultures. J. Neurochem. 58, 1905–1915.PubMedCrossRefGoogle Scholar
  38. 38.
    Yu, A. C., Fisher, T. E., Hertz, E., Tildon, J. T., Schousboe, A., and Hertz, L. (1984) Metabolic fate of [14C]-glutamine in mouse cerebral neurons in primary cultures. J. Neurosci. Res. 11, 351–357.PubMedCrossRefGoogle Scholar
  39. 39.
    Yudkoff, M., Nissim, I., Hummeler, K., Medow, M., and Pleasure, D. (1986) Utilization of [15N]glutamate by cultured astrocytes. Biochem. J. 234, 185–192.PubMedGoogle Scholar
  40. 40.
    Cooper, A. J. and Plum, F. (1987) Biochemistry and physiology of brain ammonia. Physiol. Rev. 67, 440–519.PubMedGoogle Scholar
  41. 41.
    Plaitakis, A. and Berl, S. (1988) Pathology of glutamate dehydrogenase, in Glutamine and glutamate in mammals (Kvamme, E., ed.), CRC, Boca Raton, FL, pp. 128–140.Google Scholar
  42. 42.
    Wullner, U., Young, A. B., Penney, J. B., and Beal, M. F. (1994) 3-Nitropropionic acid toxicity in the striatum. J. Neurochem. 63, 1772–1781.PubMedCrossRefGoogle Scholar
  43. 43.
    Brouillet, E., Jenkins, B. G., Hyman, B. T., et al. (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60, 356–359.PubMedCrossRefGoogle Scholar
  44. 44.
    Erecinska, M. and Nelson, D. (1994) Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases. J. Neurochem. 63, 1033–1041.PubMedCrossRefGoogle Scholar
  45. 45.
    Beal, M. F, Brouillet, E., Jenkins, B., Henshaw, R., and Hyman B. T. (1993) Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61, 1147–1150.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu, A. C. H, Drejer, J., Hertz, L., and Schousboe, A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1484–1487.PubMedCrossRefGoogle Scholar
  47. 47.
    Brookes, N. and Kristt, D. A. (1989) Inhibition of amino acid transport and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J. Neurochem. 53, 1228–1237.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim, S. U., Park, S. T., Lim, K. T., and Chung, Y. T. (1996) Methylmercuryinduced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17, 37–45.PubMedGoogle Scholar
  49. 49.
    Ali, S. F., LeBel, C. P., and Bondy, S.C. (1992). Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity, Neurotoxicology 13, 637–648.PubMedGoogle Scholar
  50. 50.
    Ganther, H. E., Goudie, C., Sunde, M. L., et al. (1972) Selenium: relation to decreased toxicity of methyl mercury added to diet containing tuna. Science 75, 1122–1124.CrossRefGoogle Scholar
  51. 51.
    Yee, S. and Choi, B. H. (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17, 17–26.PubMedGoogle Scholar
  52. 52.
    Atchison, W. D. and Hare, M. F. (1994) Mechanisms of methylmercury-induced neurotoxicity, FASEB J. 8, 622–629.PubMedGoogle Scholar
  53. 53.
    Charleston, J. S., Body, R. L., Mottet, N. K., Vahter, M. E., and Burbacher, T. M. (1995) Autometallographic determination of inorganic mercury distribution in the cortex of the carlacrine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric. Toxicol. Appl. Pharmacol. 132, 325–333.PubMedCrossRefGoogle Scholar
  54. 54.
    Garman, R. H., Weiss, B., and Evans, H. L. (1975) Alkylmercurial encephalopathy in the monkey (Saimiri sciureus and Macaca arctoides): a histopathologic and autoradiographic study. Acta Neuropathol. 32, 61–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Aschner, M., Eberle, N. B., Miller, K., and Kimelberg, H. K. (1990) Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling. Brain Res. 530, 245–250.PubMedCrossRefGoogle Scholar
  56. 56.
    Aschner, M., Yao, C. P., Allen J. W., and Tan, K. H. (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem. Int. 37, 199–206.PubMedCrossRefGoogle Scholar
  57. 57.
    Coyle, J. T. and Puttfarken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.PubMedCrossRefGoogle Scholar
  58. 58.
    Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14, 2924–2932.PubMedGoogle Scholar
  59. 59.
    Volterra, A., Trotti, D., and Racagni, G. (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharm. 46, 986–992.Google Scholar
  60. 60.
    Trotti, D., Nussberger, S., Volterra, A., and Hediger, M. A. (1997) Differential modulation of the uptake currents by redox interconversion of cysteine residues in the human neuronal glutamate transporter EAAC1. Eur. J. Neurosci. 9, 236–124.Google Scholar
  61. 61.
    Murphy, T. H., Schnaar, R. L., and Coyle, J. T. (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4, 1624–1633.PubMedGoogle Scholar
  62. 62.
    Sarafian, T. A., Vartavarian, L., Kane, D. J., Bredesen, D. E., and Verity, M. A. (1994) Bcl-2 expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line. Toxicol. Lett. 74, 149–155.PubMedCrossRefGoogle Scholar
  63. 63.
    Philbert, M. A., Beiswanger, C. M., Waters, D. K., Reuhl, K. R., and Lowndes, H. E. (1991) Cellular and regional distribution of reduced glutathione in the nervous system of the rat: histochemical localization by mercury orange and o-phthaldialdehyde-induced histofluorescence. Toxicol. Appl. Pharmacol. 107, 215–227.PubMedCrossRefGoogle Scholar
  64. 64.
    Allen, J. W., Shanker, G., and Aschner, M. (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes but not in neurons. Brain Res. 891, 148–157.PubMedCrossRefGoogle Scholar
  65. 65.
    Bannai, S. (1984) Transport of cystine and cysteine in mammalian cells. Biochim. Biophys. Acta 779, 289–306.PubMedGoogle Scholar
  66. 66.
    Bender, A. S., Reichelt, W., and Norenberg, M. D. (2000) Characterization of cystine uptake in cultured astrocytes. Neurochem. Int. 37, 269–276.PubMedCrossRefGoogle Scholar
  67. 67.
    Miura, K. and Clarkson, T. W. (1993) Reduced methylmercury accumulation in a methylmercury-resistant rat pheochromocytoma PC12 cell line. Toxicol. Appl. Pharmacol. 118, 39–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Aschner, M., Mullaney, K. J., Wagoner, D, Lash, L. H., and Kimelberg, H. K. (1994) Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)-and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures. Brain Res. 664, 133–140.PubMedCrossRefGoogle Scholar
  69. 69.
    Bannai, S. and Kitamura, E. (1980) Transport interaction of l-cystine and l-glutamate in human diploid fibroblasts in culture. J. Biol. Chem. 255, 2372–2376.PubMedGoogle Scholar
  70. 70.
    Schlag, B. D., Vondrasek, J. R., Munir, M., et al. (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. J. Neurosci. 53, 355–369.Google Scholar
  71. 71.
    Allen, J. W., Mutkus, L. A., and Aschner, M. (2001) Methylmercury-mediated inhibition of 3H-d-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res. 902, 97–100.CrossRefGoogle Scholar
  72. 72.
    Vitarella, D., Kimelberg, H. K., and Aschner, M. (1996) Inhibition of regulatory volume decrease in swollen rat primary astrocyte cultures by methylmercury is due to increased amiloride-sensitive Na+ uptake. Brain Res. 732, 169–178.PubMedCrossRefGoogle Scholar
  73. 73.
    Kranich, O., Dringen, R., Sandberg, M., and Hamprecht, B. (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22, 11–18.PubMedCrossRefGoogle Scholar
  74. 74.
    Monaghan, D. T., Holets, V. R., Toy, V. W., and Cotman, C. W. (1983) Anatomical distributions of four pharmacologically distinct 3H-l-glutamate binding sites. Nature 306, 176–179.PubMedCrossRefGoogle Scholar
  75. 75.
    Monaghan, D. T. and Cotman, C. W. (1985) Distribution of NMDA-sensitive 3H-l-glutamate binding sites in rat brain as determined by quantative autoradiography. J. Neurosci. 5, 2909–2919.PubMedGoogle Scholar
  76. 76.
    Sonnewald, U., Hertz, L., and Schousboe, A. (1998) Mitochondrial heterogeneity in the brain at the cellular level. J. Cereb. Blood Flow Metab. 18, 231–237.PubMedCrossRefGoogle Scholar
  77. 77.
    Allen, J. W., El-Oqayli, H., Aschner, M., Syversen, T., and Sonnewald, U. Methylmercury has a selective effect on mitochondria in cultured astrocytes in the presence of [U-13C]glutamate. Brain Res. 908, 149–154.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Michael Aschner
    • 1
  • Ursula Sonnewald
    • 2
  1. 1.Department of Physiology and PharmacologyWake Forest University School of MedicineWinston-Salem
  2. 2.Department of Clinical NeuroscienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations