Advertisement

In Vitro Neurotoxicology

Introduction to Concepts
  • Evelyn Tiffany-Castiglioni
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The history of neuroscience is punctuated by oracular disclosures from in vitro systems. In 1907, a pivotal tissue culture study by Harrison proved that Ramón y Cajal’s theory on the developmental origin of nerve fibers was correct. Cajal had proposed in 1890, based on microscopic analysis of static histologic tissue sections, that the immature neuronal cell body sends out an axon that elongates freely, bearing a motile growth cone at its tip. Competing theories held that free growth of neurites did not occur, but that the neurites formed from the fusion of elements produced by other cells or from the stretching of a protoplasmic bridge between central and peripheral cell bodies of a multinucleated cell (1). These theories could not be tested by the histologic methods of the time, because axonal growth by a living neuron could not be directly observed. Harrison (2) pioneered a culture system for long-term microscopic observation of neuronal differentiation in living tadpole neural tube tissue. His observation that neurites grow out from cell bodies has been hailed as “one of the most revolutionary results in experimental biology” (3).

Keywords

Nerve Growth Factor Neuronal Migration Fetal Alcohol Syndrome Inorganic Mercury Radial Glia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ramón y Cajal, S. (1991) Recollections of My Life (Craig, E. H. and Cano, J., transl.), The MIT Press, Cambridge, MA.Google Scholar
  2. 2.
    Harrison, R. G. (1907) Observations on the living developing nerve fiber. Anat. Rec. 1, 116–118.Google Scholar
  3. 3.
    Shephard, G. M. (1994) Neurobiology, 3rd ed. Oxford University Press. New York.Google Scholar
  4. 4.
    Levi-Montalcini, R., Meyer, H., and Hamburger, V. (1954) In vitro effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 14, 49–57.PubMedGoogle Scholar
  5. 5.
    Cohen, S., Levi-Montalcini, R., and Hamburger V. (1954) A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc. Natl. Acad. Sci. USA 40, 1014–1018.PubMedGoogle Scholar
  6. 6.
    Levi-Montalcini, R. (1987) The nerve growth factor thirty-five years later. In Vitro Cell. Dev. Biol. 23, 227–238.PubMedGoogle Scholar
  7. 7.
    Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312.PubMedGoogle Scholar
  8. 8.
    Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83.PubMedGoogle Scholar
  9. 9.
    Rakic, P. (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54(Suppl. 1), 25–40.PubMedGoogle Scholar
  10. 10.
    Edmondson, J. C. and Hatten, M. E. (1987) Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7(6), 1928–1934.PubMedGoogle Scholar
  11. 11.
    Hatten, M. E. (1993) The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol. 3, 38–44.PubMedGoogle Scholar
  12. 12.
    Hatten, M. E. (1999) Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539.PubMedGoogle Scholar
  13. 13.
    Edmondson, J. C., Liem, R. K., Kuster, J. E., and Hatten, M. E. (1988) Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J. Cell. Biol. 106, 505–517.PubMedGoogle Scholar
  14. 14.
    Adams, N. C., Tomoda, T., Cooper, M., Dietz, G., and Hatten, M. E. (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129(Suppl.), 965–972.PubMedGoogle Scholar
  15. 15.
    Carmignoto, G. (2000) Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol. 62, 561–581.PubMedGoogle Scholar
  16. 16.
    Bezzi, P. and Volterra, A. (2001) A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11, 387–394.PubMedGoogle Scholar
  17. 17.
    Araque, A., Carmignoto, G., and Haydon, P. G. (2001) Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813.PubMedGoogle Scholar
  18. 18.
    National Research Council, Committee on Alternative Chemical Demilitarization Technologies (CACDT). (1993) Alternative Technologies for the Destruction of Chemical Agents and Munitions, Board on Army Science and Technology, Commission on Engineering and Technical Systems, National Academy of Sciences, Washington, DC.Google Scholar
  19. 19.
    Ecobichon, D. J. (1991) Toxic effects of pesticides, in Casarett and Doull’s Toxicology: The Basic Science of Poisons (Amdur, M.O., Doull, J., and Klaassen, C.D., eds.), Pergamon, New York, pp. 565–622.Google Scholar
  20. 20.
    Pope, A. M., Heavner, J. E, Guarnieri, J. A., and Knobloch, C.P. (1986) Trichlorfon-induced congenital cerebellar hypoplasia in neonatal pigs. J. Am. Vet. Med. Assoc. 189, 781–783.PubMedGoogle Scholar
  21. 21.
    Berge, G. N., Fonnum, F., and Brodal, P. (1987) Neurotoxic effects of prenatal trichlorfon administration in pigs. Acta Vet. Scand. 28, 321–332.PubMedGoogle Scholar
  22. 22.
    Czeizel, A. E., Elek, C., Gundy, S., et al. (1993) Environmental trichlorfon and cluster of congenital abnormalities. Lancet 341, 539–542.PubMedGoogle Scholar
  23. 23.
    Chanda, S. M. and Pope, C. N. (1996) Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol. Biochem. Behav. 53, 771–776.PubMedGoogle Scholar
  24. 24.
    Loewenherz, C., Fenske, R. A., Simcox, N. J., Bellamy, G., and Kalman, D. (1997) Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ. Health Perspect. 105, 1344–1353.PubMedGoogle Scholar
  25. 25.
    Hjelde, T., Mehl, A., Schanke, T. M., and Fonnum, F. (1998) Teratogenic effects of tricholorfon (Metrifonate) on the guinea-pig brain. Determination of the effective dose and the sensitive period. Neurochem. Int. 32, 469–477.PubMedGoogle Scholar
  26. 26.
    ATSDR (2001) CERCLA List of Priority Hazardous Substances. ATSDR Information Center, Division of Toxicology, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA.Google Scholar
  27. 27.
    Markowitz, M. (2000) Lead poisoning: a disease for the new millennium. Curr. Probl. Pediatr. 30, 62–70.PubMedGoogle Scholar
  28. 28.
    Tong, S., von Schirnding, Y. E., and Prapamontol, T. (2000) Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Organ. 78, 1068–1077.PubMedGoogle Scholar
  29. 29.
    Duckett, S., Galle, P., and Kradin, R. (1977) The relationship between Parkinson syndrome and vascular siderosis: an electron microprobe study. Ann. Neurol. 2, 225–229PubMedGoogle Scholar
  30. 30.
    Kuhn, W., Winkel, R., Woitalla, D., Meves, S., Przuntek, H., and Müller T. (1998) High prevalence of parkinsonism after occupational exposure to leadsulfate batteries. Neurology 50, 885–1886Google Scholar
  31. 31.
    Gorell, J. M., Rybicki, B. A., Johnson, C. C., and Peterson, E. L. (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18, 303–308.PubMedGoogle Scholar
  32. 32.
    Gorell, J. M., Johnson, C. C., Rybicki, B. A., et al. (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20, 239–248.PubMedGoogle Scholar
  33. 33.
    ATSDR (1999) Toxicological Profile for Mercury, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA.Google Scholar
  34. 34.
    Charleston, J. S., Body, R. L., Mottet, N. K., Vahter, M. E., and Burbacher T. M. (1995) Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol. Appl. Pharmacol. 132, 325–333.PubMedGoogle Scholar
  35. 35.
    Miura, K. and Imura N. (1987) Mechanism of methylmercury cytotoxicity. Crit. Rev. Toxicol. 18(3), 161–168.PubMedGoogle Scholar
  36. 36.
    Rodier, P. M., Aschner, M., and Sager, P. R. (1984) Mitotic arrest in the developing CNS after prenatal exposure to methyl mercury. Neurobehav. Toxicol. Teratol. 6, 379–385.PubMedGoogle Scholar
  37. 37.
    Choi, B. H., Lapham, L. W., Amin-Zaki, L., and Saleem T. (1978) Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J. Neuropathol. Exp. Neurol. 37, 719–733.PubMedGoogle Scholar
  38. 38.
    Matsumoto, H., Koya, G., and Takeuchi, T. (1965) Fetal Minamata disease: a neuropathological study of two cases of intrauterine intoxication by a methylmercury compound. J. Neuropathol. Exp. Neurol. 24, 563–574.PubMedGoogle Scholar
  39. 39.
    Myers, G. J., Marsh, D. O., Davidson, P. W., et al. (1995) Main neurodevelopmental study of Seychellois children following in utero exposure to methylmercury from a maternal fish diet: outcome at six months. Neurotoxicology 16, 653–664.PubMedGoogle Scholar
  40. 40.
    Grandjean, P., Weihe, P., White, R. F., and Debes, F. (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 77, 165–172.PubMedGoogle Scholar
  41. 41.
    Grandjean, P., White, R. F., Nielsen, A., Cleary, D., and de Olivereira Santos E. C. (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ. Health Perspect. 107, 587–591.Google Scholar
  42. 42.
    Dolbec, J., Mergler, D., Sousa-Passos C. J., Sousa, de-M. S., and Lebel, J. (2000) Methylmercury exposure affects motor performance of a riverine population of the Tapajos river, Brazilian Amazon. Int. Arch. Occup. Environ. Health 73, 195–203.PubMedGoogle Scholar
  43. 43.
    Clarkson, T. W. (2002) The three modern faces of mercury. Environ. Health Perspect. 110, 11–23.PubMedGoogle Scholar
  44. 44.
    Pichichero, M. E., Cernichiari, E., Lopreiato, J., and Treanor, J. (2002) Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: a descriptive study. Lancet 360, 1737–1741.PubMedGoogle Scholar
  45. 45.
    Safe, S. H. (1990) Polychlorinated biphenyls (PCBs) dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). CRC Crit. Rev. Toxicol. 21, 51–88.Google Scholar
  46. 46.
    Swanson, G. M., Ratcliffe, H. E., and Fischer, L. J. (1995) Human exposures to polychlorinated biphenyls (PCBs): a critical assessment of the evidence for adverse health effects. Regul. Toxicol. Pharmacol. 21, 136–150.PubMedGoogle Scholar
  47. 47.
    Jacobson, J. L. and Jacobson, S. W. (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N. Engl. J. Med. 335, 783–789.PubMedGoogle Scholar
  48. 48.
    Schantz, S. L., Ferguson, S. A., and Bowman, R. E. (1992) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on behavior of monkeys in peer groups. Neurotox. Teratol. 14, 433–446.Google Scholar
  49. 49.
    Schantz, S. L., Moshtaghian, J., and Ness, D. K. (1995) Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Fundam. Appl. Toxicol. 26, 117–126.PubMedGoogle Scholar
  50. 50.
    Hanneman, W. H., Legare, M. E., Barhoumi, R., Burghardt, R. C., Safe, S., and Tiffany-Castiglioni, E. (1996) Stimulation of calcium uptake in cultured rat hippocampal neurons by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology 112(1), 19–28.PubMedGoogle Scholar
  51. 51.
    Barhoumi, R., Mouneimne, Y., Phillips, T. D., Safe, S. H., and Burghardt, R. C. (1996) Alteration of oxytocin-induced calcium oscillations in clone 9 cells by toxin exposure. Fundam. Appl. Toxicol. 33(2), 220–228.PubMedGoogle Scholar
  52. 52.
    Kodavanti, P. R. S. and Tilson, H. (2000). Neurochemical effects of environmental chemicals: in vitro and in vivo correlations on second messenger pathways. Ann. NY Acad. Sci. 919, 97–105.PubMedGoogle Scholar
  53. 53.
    Legare, M. E., Hanneman, W. H., Barhoumi, R., Burghardt, R. C., and Tiffany-Castiglioni, E. (2000) 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters hippoc-ampal astroglia-neuronal gap junctional communication. Neurotoxicology 21, 1109–1116.PubMedGoogle Scholar
  54. 54.
    Hong, S. J., Grover, C. A., Safe, S. H., Tiffany-Castiglioni, E., and Frye, G. D. (1998) Halogenated aromatic hydrocarbons suppress CA1 field excitatory postsynaptic potentials in rat hippocampal slices. Toxicol. Appl. Pharmacol. 148, 7–13.PubMedGoogle Scholar
  55. 55.
    Schantz, S. L. and Widholm, J. J. (2001) Cognitive effects of endocrine-disrupting chemicals in animals. Environ. Health Perspect. 109, 1197–1206.PubMedGoogle Scholar
  56. 56.
    Clarren, S. K. and Smith, D. W. (1978) The fetal alcohol syndrome. N. Engl. J. Med. 298, 1063–1067.PubMedGoogle Scholar
  57. 57.
    Miller, M. W. (1992) The effects of prenatal exposure to ethanol on cell proliferation and neuronal migration, in Development of the Central Nervous System: Effects of Alcohol and Opiates (Miller M., ed.), Alan R. Liss, New York, pp. 47–69.Google Scholar
  58. 58.
    Guerri, C., Sáez, R., Portolés, M., and Renau-Piqueras, J. (1993) Derangement of astrogliogenesis as a possible mechanism involved in alcohol-induced alterations of central nervous system development. Alcohol Alcohol. 2(Suppl.), 203–208.Google Scholar
  59. 59.
    Jones, K. L., Smith, D. W., Ulleland, C. N., and Streissguth, A. P. (1973) Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1, 1267–1271.PubMedGoogle Scholar
  60. 60.
    Bo, W. J., Krueger, W. A., Rudeen, P. K., and Symmes, S. K. (1982) Ethanol-induced alterations in the morphology and function of the rat ovary. Anat. Rec. 202, 255–260.PubMedGoogle Scholar
  61. 61.
    Dees, W. L. and Skelley, C. W. (1990) Effects of ethanol during the onset of female puberty. Neuroendocrinology 51, 64–69.PubMedGoogle Scholar
  62. 62.
    Dees, W. L., Skelley, C. W., Hiney, J. K., and Johnston, C. A. (1990) Actions of ethanol on hypothalamic and pituitary hormones in prepubertal female rats. Alcohol 7, 21–25.PubMedGoogle Scholar
  63. 63.
    Dees, W. L., Dissen, G. A., Hiney, J. K., Lara, F., and Ojeda, S. R. (2000) Alcohol ingestion inhibits the increased secretion of puberty-related hormones in the developing female rhesus monkey. Endocrinology 141, 1325–1331.PubMedGoogle Scholar
  64. 64.
    Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., and Beyreuther, K. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757–2763.PubMedGoogle Scholar
  65. 65.
    Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245, 417–420.PubMedGoogle Scholar
  66. 66.
    Behl, C. (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res. 290, 471–480.PubMedGoogle Scholar
  67. 67.
    Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.PubMedGoogle Scholar
  68. 68.
    Spillantini, M. G. and Goedert, M. (2000) The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann. NY Acad. Sci. 920, 16–27.PubMedGoogle Scholar
  69. 69.
    Aschner, M., Allen, J. W., Kimelberg, H. K., LoPachin, R. M., and Streit, W. J. (1999) Glial cells in neurotoxicity development. Annu. Rev. Pharm. Toxicol. 39, 151–173.Google Scholar
  70. 70.
    Le, W-D., Rowe, D., Xie, W., Ortiz, I., He, Y., and Appel, S. H. (2001) Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s Disease. J. Neurosci. 2, 8447–8455.Google Scholar
  71. 71.
    Chang, J. Y. and Liu, L-Z. (1999) Manganese potentiates nitric oxide production by microglia. Mol. Brain. Res. 68, 22–28.PubMedGoogle Scholar
  72. 72.
    Gao, H.-M., Hong, J.-S., Zhang, W., and Liu, B. (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782–790.PubMedGoogle Scholar
  73. 73.
    Harry, G. J., Tyler, K., ďHellencourt, C. L., Tilson, H. A., and Maier, W. E. (2002) Morphological alterations and elevations in tumor necrosis factor-α, interleukin (IL)-1α, and IL-6 in mixed glia cultures following exposure to trimethyltin: modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicol. Appl. Pharm. 180, 205–218.Google Scholar
  74. 74.
    Carlson, K., Jortner, B. S., and Ehrich, M. (2000) Organophosphus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. Toxicol. Appl. Pharmacol. 168, 102–113.PubMedGoogle Scholar
  75. 75.
    Hong, M. S., Hong, S. J., Barhoumi, R., et al. (2003). Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicol. Appl. Pharmacol. 186, 110–118.PubMedGoogle Scholar
  76. 76.
    Purkiss, J. R., Friis, L. M., Doward, S., and Quinn, C. P. (2001) Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Neurotoxicology 22, 447–453.PubMedGoogle Scholar
  77. 77.
    Li, W. F. and Casida, J. E. (1998) Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol. Lett. 98, 139–146.PubMedGoogle Scholar
  78. 78.
    Das, K. D. and Barone, S. J. (1999). Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: Is acetylcholinesterase inhibition the site of action? Toxicol. Appl. Pharmacol. 160, 217–230.PubMedGoogle Scholar
  79. 79.
    Zachor, D. A., Moore, J. F., Brezauzek, C. M., Theibert, A. B., and Percy, A. K. (2000) Cocaine inhibition of neuronal differentiation in NGF-induced PC12 cells is independent of ras signaling. Int. J. Dev. Neurosci. 18, 765–772.PubMedGoogle Scholar
  80. 80.
    Crumpton, T. L., Atkins, D., Zawia, N., and Barone, S., Jr. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding. Neurotoxicology 22, 49–62.PubMedGoogle Scholar
  81. 81.
    Parran, D. K., Mundy, W. R., and Barone, S., Jr. (2001) Effects of methylmercury and mercuric chloride on differentiation and cell viability in PC12 cells. Toxicol. Sci. 59, 278–290.PubMedGoogle Scholar
  82. 82.
    Shafer, T. J., Meacham, C. A., and Barone, S. (2002). Effects of prolonged exposure to nanomolar concentrations of methylmercury on voltage-sensitive sodium and calcium currents in PC12 cells. Dev. Brain Res. 136, 151–164.Google Scholar
  83. 83.
    Son, J. H., Chun, H. S., Joh, T. H., Cho, S., Conti, B., and Lee, J.W., (1999) Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J. Neurosci. 19, 10–20.PubMedGoogle Scholar
  84. 84.
    Chun, H. S., Lee, H., and Son, J. H. (2001). Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neurosci. Lett. 316, 5–8.PubMedGoogle Scholar
  85. 85.
    Qian, Y, Harris, E. D., Zheng, Y., and Tiffany-Castiglioni, E. (2000) Lead (Pb) targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol. Appl. Pharmacol. 163, 260–266.PubMedGoogle Scholar
  86. 86.
    Takanaga, H., Kunimoto, M., Adachi, T., Tohyama, C, and Aoki, Y. (2001) Inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cAMP-induced differentiation of rat C6 glial cell line. J. Neurosci. Res. 64, 402–409.PubMedGoogle Scholar
  87. 87.
    Guizzetti, M. and Costa, L. G. (2002) Effect of ethanol on protein kinase Cζ and p70S6 kinase activation by carbachol: a possible mechanism for ethanol-induced inhibition of glial cell proliferation. J. Neurochem. 82, 38–46.PubMedGoogle Scholar
  88. 88.
    Mead, C. and Pentreath, V. M. (1998) Evaluation of toxicity indicators in rat primary astrocytes, C6 glioma and human 1321N1 astrocytoma cells: can gliotoxicity be distinguished from cytotoxicity? Arch. Toxicol. 72, 372–380.PubMedGoogle Scholar
  89. 89.
    Inglefield, J. R., Mundy, W. R., and Shafer, T. J. (2001) inositol 1,4,5-trisphosphate receptor-sensitive Ca2+ release, store-operated Ca2+ entry, and camp responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J. Pharmacol. Exp. Ther. 297, 762–773.PubMedGoogle Scholar
  90. 90.
    Yang, J.-H. and Kodavanti, R. S. (2001) Possible molecular targets of halogenated aromatic hydrocarbons in neuronal cells. Biochem. Biophys. Res. Commun. 280, 1372–1377.PubMedGoogle Scholar
  91. 91.
    Dyatlov, V. A., Dyatlov, O. M., Parsons, P. J., Lawrence, D. A., and Carpenter, D. O. (1998) Lipopolysaccharide and interleukin-6 enhance lead entry into cerebellar neurons: application of a new and sensitive flow cytometric technique to measure intracellular lead and calcium concentrations. Neurotoxicology 19, 293–302.PubMedGoogle Scholar
  92. 92.
    Audesirk, T. and Cabell, L. (1999). Nanomolar concentrations of nicotine and cotinine alter the development of cultured hippocampal neurons via non-ace-tylcholine receptor-mediated mechanisms. Neurotoxicology 20, 639–646.PubMedGoogle Scholar
  93. 93.
    Braga, M. F. M., Pereira, E. F. R., and Albuquerque, E. X. (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Res. 826, 22–34.PubMedGoogle Scholar
  94. 94.
    Heidemann, S. R., Lamoureux, P., and Atchison, W. D. (2001) Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury. Toxicol. Appl. Pharmacol. 174, 49–59.PubMedGoogle Scholar
  95. 95.
    Bestervelt, L. L., Pitt, J. A., and Piper, W. N. (1998) Evidence for Ah receptor mediation of increased ACTH concentrations in primary cultures of rat anterior pituitary cells exposed to TCDD. Toxicol. Sci. 46, 294–299.PubMedGoogle Scholar
  96. 96.
    Bouton, C. M. L. S., Hossain, M. A., Frelin, L. P., Laterra, J., and Pevsner, J. (2001) Microarray analysis of differential gene expression in lead-exposed astrocytes. Toxicol. Appl. Pharmacol. 176, 34–53.PubMedGoogle Scholar
  97. 97.
    Yao, C. P., Allen, J. W., Conklin, D. R., and Aschner, M. (1999) Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity. Brain Res. 818, 414–420.PubMedGoogle Scholar
  98. 98.
    Yao, C. P., Allen, J. W., Mutkus, L. A., Xu, S. B., Tan, K. H., and Aschner, M. (2000) Foreign metallothionein-I (MT-I) expression by transient transfection in MT-I and-II null astrocytes confers increased protection against acute methylmercury cytotoxicity. Brain Res. 855, 32–38.PubMedGoogle Scholar
  99. 99.
    Deng, W. and Poretz, R. D. (2002) Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells. Brain Res. 929, 87–95.PubMedGoogle Scholar
  100. 100.
    Xu, J., Chen, S., Ahmed, S. H., et al. (2001) Amyloid-α peptides are cytotoxic to oligodendrocytes. J. Neurosci. 21, 1–5.Google Scholar
  101. 101.
    Tang, H. W., Yan, H. L., Hu, X. H., Liang, Y. X., and Shen, X. Y. (1996) Lead cytotoxicity in primary cultured rat astrocytes and Schwann cells. J. Appl. Toxicol. 16, 187–196PubMedGoogle Scholar
  102. 102.
    Tomsig, J.L., and Suszkiw, J.B. (1995) Multisite interactions between Pb+2 and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. J. Neurochem. 64, 2667–2773.PubMedGoogle Scholar
  103. 103.
    Vijverberg, H. P. M., Zwart, R., Van Den Beukel, I., Oortgiesen, M., and Van Kleef, R. G. D. M. (1997) In vitro approaches to species and receptor diversity in cellular neurotoxicology. Toxicol. In Vitro 11, 491–498.PubMedGoogle Scholar
  104. 104.
    Pantazis, N. J., Zaheer, A., Dai, D., Zaheer, S., Green, S. H., and Lim, R. (2000) Transfection of C6 glioma cells with glia maturation factor upregulates brain-derived neurotrophic factor and nerve growth factor: trophic effects and protection against ethanol toxicity in cerebellar granule cells. Brain Res. 865, 59–76.PubMedGoogle Scholar
  105. 105.
    Lindahl, L. S., Bird, L., Legare, M. E., Mikeska, G, Bratton, G. R., and Tiffany-Castiglioni, E. (1999) Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and on degree of differentiation. Toxicol. Sci. 50, 236–243.PubMedGoogle Scholar
  106. 106.
    Shanker, G, Allen, J. W., Mutkus, L. A., Aschner, M. (2001) Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Res. 914, 159–165.PubMedGoogle Scholar
  107. 107.
    Monnet-Tschudi, F., Zurich, M.-G., Schilter, B., Costa, L. G, and Honegger, P. (2000) Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol. Appl. Pharmacol. 165, 175–183.PubMedGoogle Scholar
  108. 108.
    Hirai, K., Yoshioka, H., Kihara, M., Hasegawa, K., Sawada, T., and Fushiki, S. (1999) Effects of ethanol on neuronal migration and neural cell adhesion molecules in the embryonic rat cerebral cortex: a tissue culture study. Dev. Brain Res. 118, 205–210.Google Scholar
  109. 109.
    He, L., Poblenz, A. T., Medrano, C. J., and Fox, D.A. (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem. 275, 12,175–12,184.PubMedGoogle Scholar
  110. 110.
    Kimelberg, H. K., Cai, Z., Schools, G., and Zhou, M. (2000) Acutely isolated astrocytes as models to probe astrocyte functions. Neurochem. Int. 36, 359–367.PubMedGoogle Scholar
  111. 111.
    Vallés, S., Sancho-Tello, M., Miñana, R., Climent, E., Renau-Piqueras, J., and Guerri, C. (1996) Glial fibrillary acidic protein expression in rat brain and in radial glia culture is delayed by prenatal ethanol exposure. J. Neurochem. 67, 2425–2433.PubMedGoogle Scholar
  112. 112.
    Chen, H-H., Ma, T., and Ho, I. K. (1999) Protein kinase C in rat brain is altered by developmental lead exposure. Neurochem. Res. 24, 415–421.PubMedGoogle Scholar
  113. 113.
    Grover, C. A. and Frye, G. D. (1996) Ethanol effects on synaptic neurotrans-mission and tetanus-induced synaptic plasticity in hippocampal slices of chronic in vivo lead-exposed adult rats. Brain Res. 734, 61–71.PubMedGoogle Scholar
  114. 114.
    Goldstein, G. W. (1988) Endothelial cell-astrocyte interactions: a cellular model of the blood-brain barrier. Ann. NY Acad. Sci. 529, 31–39.PubMedGoogle Scholar
  115. 115.
    Sobue, K., Yamamoto, N., Yoneda, K., et al. (1999) Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res. 35, 155–164.PubMedGoogle Scholar
  116. 116.
    Wolburg, H., Neuhaus, J., Kniesel, U., et al. (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells: effects of tissue culture, second messengers and cocultured astrocytes. J. Cell. Sci. 107, 1347–1357.PubMedGoogle Scholar
  117. 117.
    Gumbleton, M. and Audus, K. L. (2001) Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci. 90, 1681–1698.PubMedGoogle Scholar
  118. 118.
    Tiffany-Castiglioni, E., Neck, K.F., and Caceci, T. (1986) Glial culture on artificial capillaries: electron microscopic comparison of C6 rat glioma cells and rat astroglia. J. Neurosci. Res. 16, 387–396.PubMedGoogle Scholar
  119. 119.
    Stanness, K. A., Westrum, L. E., Fornaciari, E., et al. (1997) Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res. 771, 329–342.PubMedGoogle Scholar
  120. 120.
    Guerri, C., Pascual, M., and Renau-Piqueras, J. (2001) Glia and fetal alcohol syndrome. Neurotoxicology 22, 593–599.PubMedGoogle Scholar
  121. 121.
    Tofolin, P. J. and Fike, J. R. (2000) The radioresponse of the central nervous system: a dynamic process. Radiat. Res. 153, 357–370.Google Scholar
  122. 122.
    Tiffany-Castiglioni, E. (1993) Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology 14(4), 513–536.PubMedGoogle Scholar
  123. 123.
    Roper, S. N., Abraham, L. A., and Streit, W. J. (1997) Exposure to in utero irradiation produces disruption of radial glia in rats. Dev. Neurosci. 19, 521–528.PubMedGoogle Scholar
  124. 124.
    Gressens, P. (2000) Mechanisms and disturbances of neuronal migration. Pediatr. Res. 48, 725–730.PubMedGoogle Scholar
  125. 125.
    Freshney, R. I. (2000) Culture on Animal Cells: A Manual of Basic Technique, 4th ed., Wiley-Liss, New York.Google Scholar
  126. 126.
    Bissell, M. G., Eng, L.F., Herman, M. M., Bensch, K. G., and Miles, L. E. (1975) Quantitative increase of neuroglia-specific GFA protein in rat C-6 glioma cells in vitro. Nature 255, 633–634.PubMedGoogle Scholar
  127. 127.
    Lee, K., Kentroti, S., Billie, H., Bruce, C., and Vernadakis, A. (1992) Comparative biochemical, morphological, and immunocytochemical studies between C-6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres. Glia 6, 245–257.PubMedGoogle Scholar
  128. 128.
    Biedler, J. L., Helson, L., and Spengler, B. A. (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33, 2643–2652.PubMedGoogle Scholar
  129. 129.
    Perez-Polo, J. R., Werrbach-Perez, K., and Tiffany-Castiglioni, E. (1979) A human clonal cell line model of differentiating neurons. Dev. Biol. 71, 341–355.PubMedGoogle Scholar
  130. 130.
    Zurich, M. G., Honegger, P., Schilter, B., Costa, L. G., and Monnet-Tschudi, F. (2000) Use of aggregating brain cell cultures to study developmental effects of organophosphorus insecticides. Neurotoxicology 21, 599–606.PubMedGoogle Scholar
  131. 131.
    Harry, G.J., Billingsley, M., Bruinink, A., et al. (1998) In vitro techniques for the assessment of neurotoxicity. Environ. Health Perspect. 106(Suppl.), 131–158.PubMedGoogle Scholar
  132. 132.
    Gad, S.C. (2000) Neurotoxicology in vitro, in In Vitro Toxicology, 2nd ed., (Gad, C. G., ed.), Taylor and Francis, New York, pp. 188–221.Google Scholar
  133. 133.
    Barhoumi, R., Mouneimne, Y., Ramos, K. S., et al. (2000) Analysis of benzo[a]pyrene partitioning and cellular homeostasis in a rat liver cell line. Toxicol. Sci. 53, 264–270.PubMedGoogle Scholar
  134. 134.
    Barhoumi, R., Mouneimne, Y., Awooda, I., Safe, S.H., Donnelly, K.C., and Burghardt, R.C. (2002) Characterization of calcium oscillations in normal and benzo[a]pyrene-treated Clone 9 cells. Toxicol. Sci. 68, 444–450.PubMedGoogle Scholar
  135. 135.
    Chanda, S. M., Mortensen, S. R., Moser, V. C., and Padilla, S. (1997) Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: An in-vitro and in vivo comparison. Fund. Appl. Toxicol. 38, 148–157.Google Scholar
  136. 136.
    Carpenter, D. O., Hussain, R. J., Berger, D. F., Lombardo, J. P., and Park, H-Y. (2002) Electrophysiologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ. Health Perspect. 110(Suppl.), 377–386.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Evelyn Tiffany-Castiglioni
    • 1
  1. 1.Department of Veterinary Anatomy and Public Health, College of Veterinary MedicineTexas A&M UniversityCollege Station

Personalised recommendations