Skip to main content

Adenovirus-Mediated Gene Delivery to Dendritic Cells

  • Protocol
Gene Delivery to Mammalian Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 246))

Abstract

Dendritic cells (DCs) are “professional” antigen-presenting cells (APCs) that are uniquely capable of activating and instructing a naive immune system to mount a specific cellular and humoral response. Recognition of this crucial function makes the development of technologies for DC-based immuno-therapies a priority for the treatment of a wide variety of diseases. The most immediate impact of this emerging technology will be in the treatment of cancer and the development of third generation vaccines to protect against viral and intracellular pathogens. In addition to elicitation of immune responses, DCs also function to maintain tolerance to “self.” Once the biological basis for this important function is understood, future applications of DC-based immuotherapies may be developed to ameliorate autoimmune diseases or enhance acceptance of transplanted organs. The feasibility of “engineering” the function of DCs has been realized by recent advances in ex vivo methodologies that allow selective DC propagation, antigen loading, and genetic modification in vitro for subsequent therapeutic transfer into the host. Ultimately, the ability to genetically modify these cells will allow us to design DC-mediated interventions that will direct predictable control of either immune activation or tolerance in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhong, L., Granelli-Piperno, A., Choi, Y., and Steinman, R. M. (1999) Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur. J. Immunol. 29, 964–972.

    Article  PubMed  CAS  Google Scholar 

  2. Brossart, P., Goldrath, A. W., Butz, E. A., Martin, S., and Bevan, M. J. (1997) Virusmediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J. Immunol. 158, 3270–3276.

    PubMed  CAS  Google Scholar 

  3. Wan, Y., Emtage, P., Foley, R., Carter, R., and Gauldie, J. (1999) Murine dendritic cells transduced with an adenoviral vector expressing a defined tumor antigen can over come anti-adenovirus neutralizing immunity and induce effective tumor regression Int. J. Oncol. 14, 771–776.

    PubMed  CAS  Google Scholar 

  4. Kaplan, J. M., Yu, Q., Piraino, S. T., Pennington, S. E., Shankara, S., Woodworth, L. A., and Roberts, B. L. (1999) Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J. Immunol. 163, 699–707.

    PubMed  CAS  Google Scholar 

  5. Tillman, B. W., de Gruijl, T. D., Luykx-deBakker, S. A., Scheper, R. J., Pinedo, H. M., Curiel, T. J., et al. (1999) Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. Immunol. 162, 6378–6383.

    PubMed  CAS  Google Scholar 

  6. Rea, D., Schagen, F. H. E., Hoeben, R. C., Mehtali, M., Havenga, M. J. E., Toes, R. E. M., et al. (1999) Adnoviruses activate human dendritic cells without polarizaiton toward a T-helper type 1-inducing subset. J. Virol. 73, 10245–10253.

    PubMed  CAS  Google Scholar 

  7. Tillman, B. W., Hayes, T. L., DeGruijl, T. D., Douglas, J. T., and Curiel, D. T. (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 60, 5456–5463.

    PubMed  CAS  Google Scholar 

  8. Caux, C., Vanbervliet, B., Massacrier, C., Dezutter-Dambuyant, C., de Saint-Vis, B., Jacquet, C., et al. (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J. Exp. Med. 184, 695–706.

    Article  PubMed  CAS  Google Scholar 

  9. Schuler, G., Lutz, M., Bender, A., Thurner, B., Roder, C., Young, J. W., and Romani N. (1999) A guide to the isolation and propogation of dendritic cells, in Dendritic Cells (Lotz, M. T., and Thomson, A. W., eds.), Academic Press, New York, NY, pp. 515–553.

    Google Scholar 

  10. Inaba, K., Swiggard, W. J., Steinman, R. M., Romani, N., and Schuler, G. (1998) Generation of dendritic cells from proliferating mouse bone marrow progenitors, Unit 3.7, in Current Protocols of Immunology (Coico, R., ed.), Wiley, New York pp. 7–15.

    Google Scholar 

  11. Munn, D.H., Sharma, M. D., Lee, J. R., et al. (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870.

    Article  PubMed  CAS  Google Scholar 

  12. Ebe, A., Schleidegger, S., Strunk, D., and Stingl, G. (1994). Fetal skin-derived MHC class I+, MHC class II-dendritic cells stimulate MHC class I-restricted responses of unprimed CD8+ T cells. J. Immunol. 153, 2878–2889.

    Google Scholar 

  13. Xu, S., Ariizumi, K., Edelbaum, D., Bergstresser, P., and Takashima, R. (1995) Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J. Immunol. 154, 2697–2705.

    PubMed  CAS  Google Scholar 

  14. Jacob T., Saitoh, A., and Udey, M. C. (1997) E-caderhin-mediated adhesion involving Langerhans cell-like dendritic cells expanded from murine fetal skin. J. Immunol. 159, 2693–2701.

    Google Scholar 

  15. Winzler, C., Roveere, P., Rescigno, M., Granucci, F., Penna, G., Adorini, L., et al. (1997) Maturation stages of mouse dendritic cells in growth factor dependent longterm cultures. J. Exp. Med. 185, 317–328.

    Article  PubMed  CAS  Google Scholar 

  16. Timares, L., Takashima A., and Johnston S. A. (1998) Quantitative analysis of the immunopotency of genetically transfected dendritic cells. Proc. Natl. Acad. Sci. USA 95, 13147–13152.

    Article  PubMed  CAS  Google Scholar 

  17. Lyakh, L. A., Koski, G. K., Young, H. A., Spence, S. E., Cohen, P. A., and Rice, N. R. (2002) Adenovirus type 5 vectors induce dendritic cell differentiation in human CD14(+) monocytes cultured under serum-free conditions. Blood 99, 600–608.

    Article  PubMed  CAS  Google Scholar 

  18. Morelli, A. E., Larregina, A. T., Ganster, R. W., Zahorchak, A. F., Plowey, J. M., Takayama, T., et al. (2000) Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J. Virol. 74, 9617–9628.

    Article  PubMed  CAS  Google Scholar 

  19. Romani, N., Reider, D., Heuer, M., Ebner, S., Kampgen, E., Eibl, B., et al. (1996) Generation of mature dendritic cells from human blood-an improved method with special regard to clinical applicability. J. Immunol. Methods 196, 137–151.

    Article  PubMed  CAS  Google Scholar 

  20. Gallucci, S., Lolkema, M., and Matzinger, P. (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat. Medicine 5, 1249–1255.

    Article  CAS  Google Scholar 

  21. Alam, J. and Cook, J. (1990) Reporter genes: Application to the study of mammalian gene transcription. Anal. Biochem. 188, 245–354.

    Article  PubMed  CAS  Google Scholar 

  22. Ranieri, E., Herr, W., Gambotto, A., Olson, W., Rowe, D., Robbins, P. D., et al. (1999) Dendritic cells transduced with an adenovirus vector encoding Epstein-Barr virus latent membrane protein 2B: a new modality for vaccination. J. Virol. 73, 10416–10425.

    PubMed  CAS  Google Scholar 

  23. Brand, K., Klocke, R., Possling, A., Paul, D., and Strauss, M. (1999) Induction of apoptosis and G2/M arrest by infection with replication-deficient adenovirus at high multiplicity of infection. Gene Ther. 6, 1054–1063.

    Article  PubMed  CAS  Google Scholar 

  24. Krasnykh, V., Dmitriev, I., Mikheeva, G., Miller, C. R., Belousova, N., and Curiel, D. T. (1998) Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J. Virol. 72, 1844–1852.

    PubMed  CAS  Google Scholar 

  25. Asada-Mikami, R., Heike, Y., Kanai, S., Azuma, M., Shirakawa, K., Takaue, Y., et al. (2001) Efficient gene transduction by RGD-fiber modified recombinant adenovirus into dendritic cells. Japan. J. Cancer Res. 92, 321–327.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Timares, L., Douglas, J.T., Tillman, B.W., Krasnykh, V., Curiel, D.T. (2004). Adenovirus-Mediated Gene Delivery to Dendritic Cells. In: Heiser, W.C. (eds) Gene Delivery to Mammalian Cells. Methods in Molecular Biology™, vol 246. Humana Press. https://doi.org/10.1385/1-59259-650-9:139

Download citation

  • DOI: https://doi.org/10.1385/1-59259-650-9:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-095-3

  • Online ISBN: 978-1-59259-650-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics