Skip to main content

DNA Delivery to Cells in Culture Using Peptides

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 245))

Abstract

There are now several cationic peptide carriers that efficiently import plasmids and oligonucleotides into cells. As a result, we anticipate that cationic peptides will play an increasingly important role with in vitro and in vivo gene delivery systems. Cationic peptides usually bind through ionic interactions to the negatively charged phosphate backbone of DNA, although additional noncovalent bonds may stabilize the interaction between the polymer and DNA (Fig. 1). Alternatively, cationic peptides may be covalently conjugated to DNA to promote entry into the cell. Regardless of the type of linkage between the peptide and DNA, peptide-mediated delivery can be characterized by the pathway of entry into cells: endosomolytic (1-5) or membrane-penetrating (6-9). Endosomolytic peptides enter cells through endocytosis, whereas membrane-penetrating peptides bypass the endocytotic pathway and may fuse directly with the cellular membranes. Although this chapter will discuss several methods for preparing peptide/DNA complexes, we will focus on the solid phase synthesis of peptides and the complexes that these peptides form with DNA.

Comparison of poly-L-lysine with HK polymer. In contrast to polylysine (K), serum has minimal effect on gene expression with the H-K triplex. Poly-L-lysine (K) or H-K polymers were first incubated with the PCI-Luc for 30 min followed by incubating with DOTAP liposomes. After incubating the triplex with MDA-MB-435 cells for 4 h, luciferase expression was measured 48 h later. Although K has nearly twice as many positive charges per molecule to interact with DNA compared to HK, the transfection complex containing the K-polymer is very sensitive to the presence of serum. In contrast, the transfection complex containing the HK polymer is resistant to serum and consequently transfection remains high. These results are consistent with the occurrence of noncovalent bonds other than ionic interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wagner, E., Plank, C., Zatloukal, K., Cotten, M., and Birnstiel, M. L. (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89, 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  2. Wyman, T. B., Nicol, F., Zelphati, O., Scaria, P. V., Plank, C., and Szoka, F. C., Jr. (1997) Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 36, 3008–3017.

    Article  PubMed  CAS  Google Scholar 

  3. Niidome, T., Ohmori, N., Ichinose, A., Wada, A., Mihara, H., Hirayama, T., and Aoyagi, H. (1997) Binding of cationic-helical peptides to plasmid DNA and their gene transfer abilities into cells. J. Biol. Chem. 272, 15307–15312.

    Article  PubMed  CAS  Google Scholar 

  4. Midoux, P. and Monsigny, M. (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug. Chem. 10, 406–411.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, Q. R., Zhang, L., Stass, S. A., and Mixson, A. J. (2001) Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res. 29, 1334–1340.

    Article  PubMed  CAS  Google Scholar 

  6. Xia, H., Mao, Q., and Davidson, B. L. (2001) The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors. Nat. Biotechnol. 19, 640–644.

    Article  PubMed  CAS  Google Scholar 

  7. Eguchi, A., Akuta, T., Okuyama, H., Senda, T., Yokoi, H., Inokuchi, H., et al. (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 276, 26204–26210.

    Article  PubMed  CAS  Google Scholar 

  8. Snyder, E. L. and Dowdy, S. F. (2001) Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr. Opin. Mol. Ther. 3, 147–152.

    PubMed  CAS  Google Scholar 

  9. Kokunai, T., Urui, S., Tomita, H., and Tamaki, N. (2001) Overcoming of radioresistance in human gliomas by p21WAF1/CIP1 antisense oligonucleotide. J. Neurooncol. 51, 111–119.

    Article  PubMed  CAS  Google Scholar 

  10. Leonetti, J. P., Rayner, B., Lemaitre, M., Gagnor, C., Milhaud, P. G., Imbach, J. L., and Lebleu, B. (1988) Antiviral activity of conjugates between poly(L-lysine) and synthetic oligodeoxyribonucleotides. Gene 72, 323–332.

    Article  PubMed  CAS  Google Scholar 

  11. Leonetti, J. P., Degols, G., and Lebleu, B. (1990) Biological activity of oligonucleotide-poly-L-lysine) conjugates: mechanism of cell uptake. Bioconjug. Chem. 1, 149–153.

    Article  PubMed  CAS  Google Scholar 

  12. Degols, G., Leonetti, J. P., Gagnor, C., Lemaitre, M., and Lebleu, B. (1989) Antiviral activity and possible mechanisms of action of oligonucleotides-poly(L-lysine) conjugates targeted to vesicular stomatitis virus mRNA and genomic RNA. Nucleic Acids Res. 17, 9341–9350.

    Article  PubMed  CAS  Google Scholar 

  13. Pouton, C. W., Lucas, P., Thomas, B. J., Uduehi, A. N., Milroy, D. A., and Moss, S. H. (1998) Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control Release 53, 289–99.

    Article  PubMed  CAS  Google Scholar 

  14. Plank, C., Tang, M. X., Wolfe, A. R., and Szoka, F. C., Jr. (1999) Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther. 10, 319–332.

    Article  PubMed  CAS  Google Scholar 

  15. Ferkol, T., Perales, J. C., Mularo, F., and Hanson, R. W. (1996) Receptor-mediated gene transfer into macrophages. Proc. Natl. Acad. Sci. USA 93, 101–105.

    Article  PubMed  CAS  Google Scholar 

  16. Bailey, A. L., Monck, M. A., and Cullis, P. R. (1997) pH-induced destabilization of lipid bilayers by a lipopeptide derived from influenza hemagglutinin. Biochim. Biophys. Acta 1324, 232–244.

    Article  PubMed  CAS  Google Scholar 

  17. Waelti, E. R. and Gluck, R. (1998) Delivery to cancer cells of antisense L-myc oligonucleotides incorporated in fusogenic, cationic-lipid-reconstituted influenzavirus envelopes (cationic virosomes). Int. J. Cancer 77, 728–733.

    Article  PubMed  CAS  Google Scholar 

  18. Schoen, P., Chonn, A., Cullis, P. R., Wilschut, J., and Scherrer, P. (1999) Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Ther. 6, 823–832.

    Article  PubMed  CAS  Google Scholar 

  19. Parente, R. A., Nir, S., and Szoka, F. C., Jr. (1990) Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29, 8720–8728.

    Article  PubMed  CAS  Google Scholar 

  20. Simoes, S., Slepushkin, V., Pretzer, E., Dazin, P., Gaspar, R., Pedroso de Lima, M. C., and Duzgunes, N. (1999) Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J. Leukoc. Biol. 65, 270–279.

    Google Scholar 

  21. Chen, Q. R., Zhang, L., Stass, S. A., and Mixson, A. J. (2000) Co-polymer of histidine and lysine markedly enhances transfection of liposomes. Gene Ther. 7, 698–704.

    Google Scholar 

  22. Putnam, D., Gentry, C. A., Pack, D. W., and Langer, R. (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA 98, 1200–1205.

    Article  PubMed  CAS  Google Scholar 

  23. Plank, C., Zatloukal, K., Cotten, M., Mechtler, K., and Wagner, E. (1992) Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetraantennary galactose ligand. Bioconjug. Chem. 3, 533–539.

    Article  PubMed  CAS  Google Scholar 

  24. Curiel, D. T., Wagner, E., Cotten, M., Birnstiel, M. L., Agarwal, S., Li, C. M., et al. (1992) High-efficiency gene transfer mediated by adenovirus coupled to DNApolylysine complexes. Hum. Gene Ther. 3, 147–154.

    Article  PubMed  CAS  Google Scholar 

  25. Ebbinghaus, S. W., Vigneswaran, N., Miller, C. R., Chee-Awai, R. A., Mayfield, C. A., Curiel, D. T. and Miller, D. M. (1996) Efficient delivery of triplex forming oligonucleotides to tumor cells by adenovirus-polylysine complexes. Gene Ther. 3, 287–297.

    PubMed  CAS  Google Scholar 

  26. Li, S. and Huang, L. (1997) In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 4, 891–900.

    Article  PubMed  CAS  Google Scholar 

  27. Li, S., Rizzo, M. A., Bhattacharya, S. and Huang, L. (1998) Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 5, 930–937.

    Article  PubMed  CAS  Google Scholar 

  28. Hashida, M., Takemura, S., Nishikawa, M., and Takakura, Y. (1998) Targeted delivery of plasmid DNA complexed with galactosylated poly-L-lysine). J. Control Release 53, 301–310.

    Article  PubMed  CAS  Google Scholar 

  29. Chaloin, L., Vidal, P., Lory, P., Mery, J., Lautredou, N., Divita, G., and Heitz, F. (1998) Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem. Biophys. Res. Commun. 243, 601–608.

    Article  PubMed  CAS  Google Scholar 

  30. Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K., et al. (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861.

    Article  PubMed  CAS  Google Scholar 

  31. Singh, D., Bisland, S. K., Kawamura, K., and Gariepy, J. (1999) Peptide-based intracellular shuttle able to facilitate gene transfer in mammalian cells. Bioconjug. Chem. 10, 745–754.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz, J. J. and Zhang, S. (2000) Peptide-mediated cellular delivery. Curr. Opin. Mol. Ther. 2, 162–167.

    PubMed  CAS  Google Scholar 

  33. Uherek, C. and Wels, W. (2000) DNA-carrier proteins for targeted gene delivery. Adv. Drug Deliv. Rev. 44, 153–166.

    Article  PubMed  CAS  Google Scholar 

  34. Astriab-Fisher, A., Sergueev, D. S., Fisher, M., Shaw, B. R., and Juliano, R. L. (2000) Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem. Pharmacol. 60, 83–90.

    Article  PubMed  CAS  Google Scholar 

  35. Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., and Sugiura, Y. (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840.

    Article  PubMed  CAS  Google Scholar 

  36. Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  37. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., and Divita, G. (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25, 2730–2736.

    Article  PubMed  CAS  Google Scholar 

  38. Morris, M. C., Chaloin, L., Mery, J., Heitz, F., and Divita, G. (1999) A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res. 27, 3510–3517.

    Article  PubMed  CAS  Google Scholar 

  39. Kalderon, D., Roberts, B. L., Richardson, W. D., and Smith, A. E. (1984) A short amino acid sequence able to specify nuclear location. Cell 39, 499–509.

    Article  PubMed  CAS  Google Scholar 

  40. Kalderon, D. and Smith, A. E. (1984) In vitro mutagenesis of a putative DNA binding domain of SV40 large-T. Virology 139, 109–137.

    Article  PubMed  CAS  Google Scholar 

  41. Robbins, J., Dilworth, S. M., Laskey, R. A., and Dingwall, C. (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623.

    Article  PubMed  CAS  Google Scholar 

  42. Makkerh, J. P., Dingwall, C., and Laskey, R. A. (1996) Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 6, 1025–1027.

    Article  PubMed  CAS  Google Scholar 

  43. Pooga, M., Lindgren, M., Hallbrink, M., Brakenhielm, E., and Langel, U. (1998) Galanin-based peptides, galparan and transportan, with receptor-dependent and independent activities. Ann. NY Acad. Sci. 863, 450–453.

    Article  PubMed  CAS  Google Scholar 

  44. Subramanian, A., Ranganathan, P., and Diamond, S. L. (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol. 17, 873–877.

    Article  PubMed  CAS  Google Scholar 

  45. Bogerd, H. P., Benson, R. E., Truant, R., Herold, A., Phingbodhipakkiya, M., and Cullen, B. R. (1999) Definition of a consensus transportin-specific nucleocytoplasmic transport signal. J. Biol. Chem. 274, 9771–9777.

    Article  PubMed  CAS  Google Scholar 

  46. Zanta, M. A., Belguise-Valladier, P., and Behr, J. P. (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96, 91–96.

    Article  PubMed  CAS  Google Scholar 

  47. Sazani, P., Kang, S. H., Maier, M. A., Wei, C., Dillman, J., Summerton, J., et al. (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. 29, 3965–3974.

    PubMed  CAS  Google Scholar 

  48. Ciolina, C., Byk, G., Blanche, F., Thuillier, V., Scherman, D., and Wils, P. (1999) Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug. Chem. 10, 49–55.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, Q. R., Zhang, L., Luther, P. W., and Mixson, A. J. (2002) Optimal transfection with the HK polymer depends on its degree of branching and the pH of endocytic vesicles. Nucleic Acids Res. 30, 1338–1345.

    Article  PubMed  CAS  Google Scholar 

  50. Chang, C. D. and Meienhofer, J. (1978) Solid phase peptide synthesis using mild base cleavage of N-α-fluonenylmethyloxy-carbonyl amino acids, exemplified by a synthesis of dihydrosomatostatin. Int. J. Pept. Protein Res. 11, 246–249.

    Article  PubMed  CAS  Google Scholar 

  51. Atherton, E., Fox, H., Harkiss, D., Logan, C. J., Sheppard, R. C., and Williams, B. J. (1978) A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamine acids. J. Chem. Soc. Chem. Commun. 18, 537–539.

    Article  Google Scholar 

  52. King, D. S., Fields, C. G., and Fields, G. B. (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Peptide Prot. Res. 36, 255–266.

    Article  CAS  Google Scholar 

  53. Robey, F. A. (1994) Starting material for cyclic peptides, peptomers, and peptide conjugates. Methods Mol. Biol. 35, 73–90.

    PubMed  CAS  Google Scholar 

  54. Patchornik, A., Berger, A., and Katchalski, E. (1957) Poly-L-histidine. J. Am. Chem. Soc. 79, 5227–5236.

    Article  CAS  Google Scholar 

  55. Norland, K. S., Gasman, G. D., Katchalsky, E., and Blout, E. R. (1963) Some optical properties of poly-l-bennyl-L-histidine and poly-L-histidine. Biopolymers 1, 277–294.

    Article  CAS  Google Scholar 

  56. Lynn, D. M., Anderson, D. G., Putnam, D., and Langer, R. (2001) Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123, 8155–8156.

    Article  PubMed  CAS  Google Scholar 

  57. Pichon, C., Roufai, M. B., Monsigny, M., and Midoux, P. (2000) Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides. Nucleic Acids Res. 28, 504–512.

    Article  PubMed  CAS  Google Scholar 

  58. Zuckermann, R., Corey, D., and Schultz, P. (1987) Efficient methods for attachment of thiol specific probes to the 3′-ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 15, 5305–5321.

    Article  PubMed  CAS  Google Scholar 

  59. Vives, E. and Lebleu, B. (1997) Selective coupling of a highly basic peptide to an oligonucleotide. Tetrahedron Lett. 38, 1183–1186.

    Article  CAS  Google Scholar 

  60. Stetsenko, D. A. and Gait, M. J. (2000) Efficient conjugation of peptides to oligonucleotides by “native ligation.” J. Org. Chem. 65, 4900–4908.

    Article  PubMed  CAS  Google Scholar 

  61. Stetsenko, D. A. and Gait, M. J. (2000) New phosphoramidite reagents for the synthesis of oligonucloetides containing a cysteine residue useful in peptide conjugiaton. Nucl. Nucl. Acids 19, 1751–1764.

    Article  CAS  Google Scholar 

  62. Li, S., Tseng, W. C., Stolz, D. B., Wu, S. P., Watkins, S. C., and Huang, L. (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther. 6, 585–594.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, L., Ambulos, N., Mixson, A. (2004). DNA Delivery to Cells in Culture Using Peptides. In: Heiser, W.C. (eds) Gene Delivery to Mammalian Cells. Methods in Molecular Biology™, vol 245. Humana Press. https://doi.org/10.1385/1-59259-649-5:33

Download citation

  • DOI: https://doi.org/10.1385/1-59259-649-5:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-086-1

  • Online ISBN: 978-1-59259-649-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics