Skip to main content

Imaging Bacterial Shape, Surface, and Appendages Before and After Treatments With Antibiotics

  • Protocol
  • 1472 Accesses

Part of the Methods in Molecular Biology™ book series (MIMB,volume 242)

Abstract

Bacteria are typically smaller than eukaryotic cells. The average diameter of Staphylococcus aureus is 1±0.5 μm, whereas Escherichia coli is on average 0.5×1.5 μm. The bacterial cell is also characterized by the presence of a complex external rigid structure called cell wall, which protects the internal protoplast and gives also the cellular shape, that generally falls into one of the, three basic morphologic categories, spherical (cocci), rod-shaped (bacilli), and spiral. Some bacteria show an atypical bacterial shape.

Keywords

  • Scanning Force Microscope
  • Basic Morphologic Category
  • Bacterial Surface Structure
  • Reflection Optical Microscope
  • Scanner Coordinate System

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-647-9:179
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-647-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Heckl, W. M. (1995) Scanning the thread of life, in The human genome (Fisher, E. P. and Klose, S., eds.), R. Piper GmbH & Co. KG, Munchen, pp. 99–146.

    Google Scholar 

  2. Braga, P. C. and Ricci, D. (1998) Atomic force microscopy: Application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob. Agents Chemother. 42, 18–22.

    PubMed  CAS  Google Scholar 

  3. Strausser, Y. E. and Heaton, M. G., (1994) Scanning probe microscopy technology and recent innovations. Am. Laboratory, May, 1–7.

    Google Scholar 

  4. Binning, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Whys. Rev. Lett. 12, 930–933.

    CrossRef  Google Scholar 

  5. Binnig, G. and Rohrer, H. (1982) Scanning tunneling microscopy. Helv. Phys. Acta. 55, 726–735.

    CAS  Google Scholar 

  6. McDonnel, L. and Phelan, M. (1998) The scanned cantilever AFM: A versatile tool for industrial application. Microscopy Anal. 52, 25–27.

    Google Scholar 

  7. Ratneshwar, L. and Scott, A. J. (1994) Biological applications of atomic force microscopy. Am. J. Physiol. 266, C1–C21.

    Google Scholar 

  8. Campbell, P. A., Gordon, R., and Walmsley, D. G. (1998) Active surface modification by scanning tunneling microscopy. Microscopy Anal. 56, 25–27.

    Google Scholar 

  9. Lorian, V. (1986) Effect of low antibiotic concentrations on bacteria: effects on ultrastructure, their virulence and susceptibility to immunodefenses, in Antibiotics in Laboratory Medicine (Lorian, V., ed.), The Williams & Wilkins Co., Baltimore, pp. 596–668.

    Google Scholar 

  10. Lorian, V., Atkinson, B., Walushacka, A., and Kim, Y. (1982) Ultrastructure, in vitro and in vivo, of staphylococci exposed to antibiotics. Curr. Microbiol. 7, 301–304.

    CrossRef  Google Scholar 

  11. Braga, P. C. and Ricci, D. (2000 ) Detection of rokitamycin-induced morphostructural alterations in Helicobacter pylori by atomic force microscopy. Chemotherapy 46, 15–22.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Braga, P. C. and Ricci, D. (2002) Differences in the susceptibility of Streptococcus pyogenes to rokitamycin and erythromycin revealed by morphostructural atomic force microscopy investigation. J. Antimicrob. Chemother. 50, 457–460.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Braga, P. C., Ricci, D., Dal Sasso, M. and Thorne, G. (2002) Bacillus cereus morphostructural damage by daptomycin: atomic force microscopy investigation. Chemotherapy 14, 336–341.

    CAS  Google Scholar 

  14. Nagao, E. and Dvorak, J. A. (1999) Developing the atomic force microscope for studies of living cells. Intern. Lab. January, 21–23.

    Google Scholar 

  15. Schaus, S. S., and Henderson, E. R. (1997) Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys. J. 73, 1205–1214

    PubMed  CrossRef  CAS  Google Scholar 

  16. Howland, R. and Benatar, L. (1997) A Practical Guide to Scanning Probe Microscopy. Park Scientific Instrument, Sunnyvale, CA, pp. 1–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Braga, P.C., Ricci, D. (2004). Imaging Bacterial Shape, Surface, and Appendages Before and After Treatments With Antibiotics. In: Braga, P.C., Ricci, D. (eds) Atomic Force Microscopy. Methods in Molecular Biology™, vol 242. Humana Press. https://doi.org/10.1385/1-59259-647-9:179

Download citation

  • DOI: https://doi.org/10.1385/1-59259-647-9:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-094-6

  • Online ISBN: 978-1-59259-647-8

  • eBook Packages: Springer Protocols