Skip to main content

Applying Atomic Force Microscopy to Studies in Cardiac Physiology

  • Protocol
  • 1481 Accesses

Part of the Methods in Molecular Biology™ book series (MIMB,volume 242)

Abstract

At the present time there exists a great deal of interest in the application of scanning probe microscopy methods to the imaging of cellular systems (1,2). It would now not be an exaggeration to state that atomic force microscopy (AFM), in particular, represents perhaps the most powerful means of structural/functional analysis at the level of a single live cell. In recent years this technology has been applied, amongst many other systems, to studies of bacterial flagella (3), erythrocytes (4), human platelets (5), endothelial cells (6), skin fibroblasts (7), plant cuticles (8), and cardiac myocytes (9). In resolution terms, perhaps the most impressive work is that of Engel et al. (10). Although not on whole cells (thereby greatly simplifying the experiment), molecular-level images of isolated cellular gap junctions, which play an important role in intracellular communication and signal transduction, have been obtained. More recently, experimental protocols have advanced to the point where it is possible to monitor, simultaneously, both cellular topography and ion channel flux (11). The ability to characterize functionally active cellular systems at a nanometre resolution under controlled fluid conditions has also been used in the monitoring of time-dependent cellular change (12,13).

Keywords

  • Atomic Force Microscopy
  • Scanning Probe
  • Single Live Cell
  • Electron Microscopy Characterization
  • Junctional Sarcoplasmic Reticulum

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-647-9:161
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-647-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3A
Fig. 4A
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 3.
Fig. 8.
Fig. 4B

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kasas, S., Gotzos, V., and Celio, M. R. (1993) Observation of living cells using the atomic force microscope. Biophys. J. 64, 539–544.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Lehenkari, P. P., Charras, G. T., Nykanen, A., and Horton, M. A. (2000) Adapting atomic force microscopy for cell biology. Ultramicroscopy 82, 289–195.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Gunning, P. A., Kirby, A. R., Parker, M. L., Gunning, A. P., and Morris, V. J. (1996) Comparative imaging of Pseudomonas putida bacterial biofilms by scanning electron microscopy and both dc contact and ac non-contact atomic force microscopy. J. Appl. Bacteriol. 81, 276–282.

    Google Scholar 

  4. Zhang, P., Bai, C., Huang, Y., Zhao, H., Fang, Y., Wang, N., and Li, Q (1995) Atomic force microscopy study of fine structures of the entire surface of red blood cells. Scanning Microscopy 9, 981–988.

    PubMed  CAS  Google Scholar 

  5. Siedlecki, C. A. and Marchant, R. E. (1998) Atomic force microscopy for characterization of the biomaterial interface. Biomaterials 19, 441–454.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Barbee, K. A. (1995) Changes in surface topography in endothelial cells imaged by atomic force microscopy. Biochem. Cell. Biol. 73, 501–505.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Braet, F., Seynaeve, C., de Zanger, R., and Wisse, E. (1998) Imaging surface and submembraneous structures with the atomic force microscopy: A study on living cancer cells, fibroblasts and macrophages. J. Microscopy 190, 328–338.

    CrossRef  CAS  Google Scholar 

  8. Canet, D., Rohr, R., Chamel, A., and Guillian, F. (1996) Atomic force microscopy study of isolated ivy leaf cuticles observed directly and after embedding in Epon. New Phytol. 134, 571–577.

    CrossRef  Google Scholar 

  9. Davis, J. J., Hill, H. A. O., and Powell, T. (2001) High resolution scanning force microscopy of cardiac myocytes. Cell Biol. Int. 25, 1271–1277.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Hand, G. M., Muller, D. J., Nicholson, B. J., Engel, A., and Sosinsky, G. E. (2002) Isolation and characterization of gap junctions from tissue culture cells. J. Mol. Biol. 315, 587–600.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Schar-Zammaretti, P., Ziegler, U., Forster, I., Groscurth, P., and Spichiger-Keller, U. E. (2002) Potassium-selective atomic force microscopy on ion-releasing substrates and living cells. Anal. Chem 74, 4269–4274.

    PubMed  CrossRef  Google Scholar 

  12. Braunstein, D. and Spudich, A. (1994) Structure and activation dynamics of RBL-2H3 cells observed with scanning force microscopy. Biophys. J. 66, 1717–1725.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Schoenberger, C. A. and Hoh, J. H., (1994) Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys. J. 67, 929–936.

    CrossRef  Google Scholar 

  14. Schauss, S. S. and Henderson, E. R. (1997) Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys. J. 73, 1205–1214.

    CrossRef  Google Scholar 

  15. Haydon, P. G., Lartius, R., Parpura, V., and Marchese-Ragona, S. P. (1996) Membrane deformation of living glial cells using atomic force microscopy. J. Microscopy 182, 114–120.

    CrossRef  CAS  Google Scholar 

  16. Klebe, R. J., Bentley, K. L., and Schoen, R. C. (1981) Adhesive substrates for fibronectin. J. Cell. Physiol. 109, 481–488.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Butt, H. J., Wolff, E. K., Gould, S. A. C., Northern, B. D., Peterson, C. M., and Hansma, P. K. (1990) Imaging cells with the atomic force microscope. J. Struct. Biol. 105, 54–61.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Kasas, S. and Ikai, A. (1996) A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 68, 1678–1680.

    CrossRef  Google Scholar 

  19. Gab, M. and Ikai, A. (1996) Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys. J. 69, 2226–2233.

    Google Scholar 

  20. Yamashina, S. and Shigeno, M. (1995) Application of atomic force microscopy to ultrastructural and histochemical studies of fixed and embedded cells. J. Electron Microsc. 44, 462–466.

    CAS  Google Scholar 

  21. Zhang, Y., Sheng, S. J., and Shao, Z. (1996) Imaging biological structures with the cryo atomic force microscope. Biophys. J. 71, 2168–2176.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Hoh, J. H. and Schonenberger, C. A. (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell. Sci. 107, 1105–1114.

    PubMed  Google Scholar 

  23. Domke, J., Parak, W. J., George, M., Gaub, H. E., and Radmacher, M. (1999) Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. Biophys Lett. 28, 179–186.

    CAS  Google Scholar 

  24. Powell, T., Noma, A., and Severs, N.J. (1998) Isolation and culture of adult cardiac myocytes, in Cell Biology: A Laboratory Handbook, 2nd ed, vol. 1 (Celis, J. E., ed). Academic Press, San Diego, CA, 1pp. 25–132

    Google Scholar 

  25. Severs, N. J., Slade, A. M., Powell, T., Twist, V. W., and Warren, R. L. (1982) Correlation of ultrastructure and function in calcium-tolerant myocytes isolated from the adult rat heart. J. Ultrastruct. Res. 81, 222–239.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Powell, T., Steen, E.M., Twist, V.W., and Woolf, N. (1978) Surface characteristics of cells isolated from adult rat myocardium. J. Mol. Cell. Cardiol. 10, 287–292.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Slade, A. M., Severs, N. J., Powell, T., Twist, V. W., and Jones, G. E. (1985) Morphometric analysis of calcium-tolerant myocytes isolated from the adult rat heart, in Advances in Myocardiology, vol. 6 (Dhalla, N. S. and Hearse D. J., eds.), Plenum Publishing Corporation, New York, pp. 3–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Davis, J.J., Powell, T., Hill, H.A.O. (2004). Applying Atomic Force Microscopy to Studies in Cardiac Physiology. In: Braga, P.C., Ricci, D. (eds) Atomic Force Microscopy. Methods in Molecular Biology™, vol 242. Humana Press. https://doi.org/10.1385/1-59259-647-9:161

Download citation

  • DOI: https://doi.org/10.1385/1-59259-647-9:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-094-6

  • Online ISBN: 978-1-59259-647-8

  • eBook Packages: Springer Protocols