Yeast Cell Synchronization

Part of the Methods in Molecular Biology™ book series (MIMB, volume 241)


Saccharomyces cerevisiae, the budding yeast, is widely used as a model eukaryote to study a large number of cellular processes including cell cycle regulation (1, 2, 3, 4). Extensive genetic research in the last two decades has revealed that the basic mechanism of cell cycle control is highly conserved in all eukaryotic cells (4,6). These observations combined with powerful genetic, molecular, and biochemical tools have frequently made S. cerevisiae the experimental organism of choice for studying the mechanisms that regulate cell cycle progression (1,4,5).


Cell Cycle Progression Yeast Nitrogen Base Pressure Gage Cell Front Centrifugal Elutriation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fantes, P. and Brooks, R. (1993) The Cell Cycle: A Practical Approach, IRL Press, New York.Google Scholar
  2. 2.
    Guthrie, C, Fink, G. R., Simon, M. I., and Abelson, J. N. (eds.) (1991) Methods in Enzymology, Vol. 194, Guide to Yeast Genetics and Molecular Biology, Academic, New York.Google Scholar
  3. 3.
    Frederick, M., Ausubel, R. B., Robert, E., et al. (eds.) (1999) Current Protocols in Molecular Biology, Wiley, New York.Google Scholar
  4. 4.
    Murray, A. and Hunt, T. (1993) The Cell Cycle: An Introduction, W. H. Freeman, New York.Google Scholar
  5. 5.
    Nasmyth, K. (2001) A prize for proliferation. Cell 107, 689–701.PubMedCrossRefGoogle Scholar
  6. 6.
    Rose, M. D., Winston, F., and Hieter, P. (1990) Methods in Yeast Genetics: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  7. 7.
    Sherman, F. (1991) Getting started with yeast, in Methods in Enzymology, Vol. 194, Guide to Yeast Genetics and Molecular Biology (Guthrie, C., Fink, G. R., Simon, M. I., and Abelson, J. N., eds.), Academic, New York, pp. 3–21.CrossRefGoogle Scholar
  8. 8.
    Breeden, L. L. (1997) Alpha-factor synchronization of budding yeast. Methods Enzymol. 283, 332–341.PubMedCrossRefGoogle Scholar
  9. 9.
    Chu, S., DeRisi, J., Eisen, M., et al. (1998) The transcriptional program of sporulation in budding yeast. Science 282, 699–705.PubMedCrossRefGoogle Scholar
  10. 10.
    Creanor, J. and Toyne J. (1993) Preparation of Synchronous Cultures of the Yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, IRL Press, Oxford, England.Google Scholar
  11. 11.
    Futcher, A. B. (1993) Analysis of the Cell Cycle in S. cerevisiae, IRL Press, Oxford, England.Google Scholar
  12. 12.
    Futcher, B. (1999) Cell cycle synchronization. Methods Cell Sci. 21, 79–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Johnston, L. H. and Johnson, A. L. (1997) Elutriation of budding yeast. Methods Enzymol. 283, 342–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Mitchison, J. M. (1988) Synchronous Cultures and Age Fractionation, IRL Press, Washington, DC.Google Scholar
  15. 15.
    Walker, G. M. (1999) Synchronization of yeast cell populations. Methods Cell Sci. 21, 87–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Cross, F. R. (1995) Starting the cell cycle: what’s the point? Curr. Opin. Cell Biol. 7, 790–797.PubMedCrossRefGoogle Scholar
  17. 17.
    Primig, M., Williams, R. M., Winzeler, E. A., et al. (2000) The core meiotic transcriptome in budding yeasts. Nat. Genet. 26, 415–423.PubMedCrossRefGoogle Scholar
  18. 18.
    Cao, L., Alani, E., and Kleckner, N. (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101.PubMedCrossRefGoogle Scholar
  19. 19.
    Alani, E., Padmore, R., and Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436.PubMedCrossRefGoogle Scholar
  20. 20.
    Stuart, D., and Wittenberg, C. (1998) CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12, 2698–2710.PubMedCrossRefGoogle Scholar
  21. 21.
    Woldringh, C. L., Fluiter, K., and Huls, P. G. (1995) Production of senescent cells of Saccharomyces cerevisiae by centrifugal elutriation. Yeast 11, 361–369.PubMedCrossRefGoogle Scholar
  22. 22.
    Egilmez, N. K., Chen, J. B., and Jazwinski, S. M. (1990) Preparation and partial characterization of old yeast cells. J. Gerontol. 45, B9–17.PubMedGoogle Scholar
  23. 23.
    Egilmez, N. K., Chen, J. B., and Jazwinski, S. M. (1989) Specific alterations in transcript prevalence during the yeast life span. J. Biol. Chem. 264, 14,312–14,317.PubMedGoogle Scholar
  24. 24.
    Ashrafi, K., Sinclair, D., Gordon, J. I., and Guarente, L. (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 96, 9100–9105.PubMedCrossRefGoogle Scholar
  25. 25.
    Haase, S. B. and Lew, D. J. (1997) Flow cytometric analysis of DNA content in budding yeast. Methods Enzymol. 283, 322–332.PubMedCrossRefGoogle Scholar
  26. 26.
    Spellman, P. T., Sherlock, G., Zhang, M. Q., et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297.PubMedGoogle Scholar
  27. 27.
    Pringle, J. R., Adams, A. E., Drubin, D. G., and Haarer, B. K. (1991) Immunofluorescence methods for yeast. Methods Enzymol. 194, 565–602.PubMedCrossRefGoogle Scholar
  28. 28.
    Hartwell, L. H., and Unger, M. W. (1977) Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell. Biol. 75, 422–435.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnston, G. C., Pringle, J. R., and Hartwell, L. H. (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  1. 1.Department of Cell Biology and BiochemistryTexas Tech University Health Sciences CenterLubbock

Personalised recommendations