Skip to main content

Enrichment of Cells in Different Phases of the Cell Cycle by Centrifugal Elutriation

  • Protocol
Cell Cycle Checkpoint Control Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 241))

  • 1221 Accesses

Abstract

Understanding the molecular and biochemical basis of cellular functions involved in growth and proliferation requires the investigation of regulatory events that most often occur in a cell cycle phase-dependent fashion. Studies involving cell cycle regulatory mechanisms and progression invariably require cell cycle synchronization of cell populations. Several methods are employed for obtaining and examining synchronized cells as they pass through one or more rounds of the cell cycle. Most of these methods involve pharmacological agents that act at various points throughout the cell cycle. Because of adverse cellular perturbations resulting from many of the synchronizing drugs used, other synchrony methods, such as serum deprivation and contact inhibition, have been exploited. Although such procedures allow synchronization of cells in a particular phase of the cell cycle, these approaches do not allow enrichment of cells, simultaneously in various phases of the cell cycle, from exponentially growing cell populations. Centrifugal elutriation described for the first time by Lindahl (1) is used to enrich cells in different phases of the cell cycle simultaneously with minimum changes in conditions during cell culture. Centrifugal elutriation can be used to obtain samples of uniformly sized cells, and because cell size is correlated with cell cycle stage, these cells are synchronized with respect to their position in the cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindahl, P. E. (1948) Principle of counterstreaming centrifuge for the separation of particles of different sizes. Nature 161, 648–649.

    Article  PubMed  CAS  Google Scholar 

  2. Brown, E. H. and Schildkraut, C. L. (1979) Perturbation of growth and differentiation of Friend murine erythroleukemia cells by 5-bromodeoxyuridine incorporation in early S-phase. J. Cell Physiol. 99, 261–277.

    Article  PubMed  CAS  Google Scholar 

  3. Conkie, D. (1985) Separation of viable cells by centrifugal elutriation, In: Animal Cell Culture: A Practical Approach (Freshney, R. I., ed.), IRL Press, Oxford, England, pp. 113–124.

    Google Scholar 

  4. Bludau, M., Kopun, M., and Werner, D. (1986) Cell cycle-dependent expression of nuclear matrix proteins of Ehrlich ascites cells studied by in vitro translation. Exp. Cell Res. 165, 269–282.

    Article  PubMed  CAS  Google Scholar 

  5. Pandita, T. K., and Hittelman, W. N. (1992) The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat. Res. 131, 214–223.

    Article  PubMed  CAS  Google Scholar 

  6. Pandita, T. K., Lieberman, H. B., Lim, D. S., et al. (2000) Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene 19, 1386–1391.

    Article  PubMed  CAS  Google Scholar 

  7. Beckman Instruments (1990) Centrifugal elutriation of living cells: an annotated bibliography, In: Applications Data, Number DS-534, Beckman Instruments, Palo Alto, CA, pp. 1–41.

    Google Scholar 

  8. de Lange, T. (1992) Human telomeres are attached to the nuclear matrix. EMBO J. 11, 717–724.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pandita, T.K. (2004). Enrichment of Cells in Different Phases of the Cell Cycle by Centrifugal Elutriation. In: Lieberman, H.B. (eds) Cell Cycle Checkpoint Control Protocols. Methods in Molecular Biology™, vol 241. Humana Press. https://doi.org/10.1385/1-59259-646-0:17

Download citation

  • DOI: https://doi.org/10.1385/1-59259-646-0:17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-115-8

  • Online ISBN: 978-1-59259-646-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics